naslovnica aktualnega Geodetskega vestnika

IF JCR (2020): 0.551
IF SNIP (2020): 0.417
ISSN: 0351-0271
e-ISSN: 1581-1328
COBISS.SI ID: 5091842
UDK: 528=863
Zveza geodetov Slovenije
Publisher:
Association of Surveyors of Slovenia
Zemljemerska ulica 12, SI-1000 Ljubljana
E-mail: info@geodetski-vestnik.si
CC

Comparison of spatial interpolation methods and multi-layer neural networks for different point distributions on a digital elevation model

Primerjava metod prostorske interpolacije in večslojnih nevronskih mrež za različne geometrijske razporeditve točk na digitalnem modelu višin

Author(s):

Kutalmis Gumus, Alper Sen

Abstract:

Interpolation of a spatially continuous variable from point samples is an important field in spatial analysis and surface models for geosciences. In this study, spatial interpolation methods which are Inverse Distance Weighted (IDW), Ordinary Kriging (OK), Modified Shepard's (MS), Multiquadric Radial Basis Function (MRBF) and Triangulation with Linear (TWL), and Multi-Layer Perceptron (MLP) which is an Artificial Neural Networks (ANN) method were compared in order to predict height for different point distributions such as curvature, grid, random and uniform on a Digital Elevation Model which is an USGS National Elevation Dataset (NED). This study also aims to quantify the effects of topographic variability and sampling density. Errors of different interpolations and ANN prediction were evaluated for different point distributions and three different cross-sections on the characteristic parts of the surface were selected and analyzed. Generally, OK, MS, MRBF and TWL gave promising results and were more effectivein terms of characteristics of surface than MLP and IDW. Although MLP simplified the contours obtained from predicted heights, it was a satisfactory predictor for curvature, grid, random and uniform distributions.

Keywords:

spatial interpolation, neural networks, point distribution

DOI: 10.15292/geodetski-vestnik.2013.03.523-543

Citation:

Kutalmis Gumus, Alper Sen (2013). Comparison of spatial interpolation methods and multi-layer neural networks for different point distributions on a digital elevation model. | Primerjava metod prostorske interpolacije in večslojnih nevronskih mrež za različne geometrijske razporeditve točk na digitalnem modelu višin. Geodetski vestnik, 57 (3), 523-543. DOI: 10.15292/geodetski-vestnik.2013.03.523-543

ISSN: 0352-3551
EISSN: 1581-0267
COBISS: 3664386
UDK: (05) 532;556;626/628.6
Zveza geodetov Slovenije
Publisher:
Association of Surveyors of Slovenia
Zemljemerska ulica 12, SI-1000 Ljubljana
E-mail: info@geodetski-vestnik.si
CC