naslovnica aktualnega Geodetskega vestnika

IF JCR (2020): 0.551
IF SNIP (2020): 0.417
ISSN: 0351-0271
e-ISSN: 1581-1328
COBISS.SI ID: 5091842
UDK: 528=863
Zveza geodetov Slovenije
Publisher:
Association of Surveyors of Slovenia
Zemljemerska ulica 12, SI-1000 Ljubljana
E-mail: info@geodetski-vestnik.si
CC

Vpliv normalizacije podatkov na transformacijo 2D-koordinat pri posplošeni regresijski nevronski mreži GRNN

The impact of data normalization on 2D coordinate transformation using GRNN

Author(s):

Leyla Cakir, Berkant Konakoğlu

Abstract:

The coordinate transformation has always been a hot topic in the field of geodesy. The artificial neural network (ANN) has been used as an alternative tool to determine the relationship between any two coordinate systems. Construction of an effective neural network depends on the network architecture, learning parameters and normalization technique used. Finding the best data normalization technique is an important step when designing a neural network. This study investigated the performances of eight normalization techniques on two-dimensional (2D) coordinate transformation using a generalized regression neural network (GRNN). The methods examined included the maximize, min-max, median, median-median absolute deviation (median-MAD), mean-mean absolute deviation (mean-MAD), statistical column, tanh, and z-score. Comparisons revealed that the min-max, median-MAD, mean-MAD, tanh, and z-score techniques achieved superior results compared to the other normalization techniques studied. In addition, the GRNN was found to be an effective, feasible and practical tool for 2D coordinate transformation.

Keywords:

artificial neural network, generalized regression neural network, coordinate transformation, normalization technique

DOI: 10.15292/geodetski-vestnik.2019.04.541-553

Citation:

Leyla Cakir, Berkant Konakoğlu (2019). Vpliv normalizacije podatkov na transformacijo 2D-koordinat pri posplošeni regresijski nevronski mreži GRNN. | The impact of data normalization on 2D coordinate transformation using GRNN. Geodetski vestnik, 63 (4), 541-553. DOI: 10.15292/geodetski-vestnik.2019.04.541-553

ISSN: 0352-3551
EISSN: 1581-0267
COBISS: 3664386
UDK: (05) 532;556;626/628.6
Zveza geodetov Slovenije
Publisher:
Association of Surveyors of Slovenia
Zemljemerska ulica 12, SI-1000 Ljubljana
E-mail: info@geodetski-vestnik.si
CC