Izvleček

Na osnovi laserskih oblakov točk 240 posameznih dreves, ki smo jih identificirali tudi na terenu, smo razvili odločitvena drevesa za ločevanje listavcev in iglavcev ter posameznih drevesnih vrst (rdeči bor, navadna bukev, gorski javor, veliki jesen, evropski macesen, navadna smreka). Kot pojasnjevalne spremenljivke smo uporabili volumen zgornjega dela drevesne krošnje (višine 3 m) in povprečno intenziteto laserskih odbojev. Uporabili smo štiri nize aerolaserskih podatkov: iz maja 2012, septembra 2012, marca 2013 in julija 2015. Ugotovili smo, da najzanesljivejše rezultate za napovedovanje izbranih drevesnih vrst daje kombinacija volumna in povprečne intenzitete prvih treh laserskih nizov (uspešnost modela 60 %). Nekoliko nižjo uspešnost modela dobimo, če uporabimo samo povprečno intenziteto prvih treh nizov (54 %). Najslabšo uspešnost modela daje intenziteta niza 4, ki predstavlja lasersko skeniranje Slovenije (LSS ) (31 %) oziroma volumen (21 %). Uspešnejše je razločevanje listavcev in iglavcev, ki na testnih podatkih dosega uspešnost 75 % oziroma 95 % (kombinacija volumna in povprečne intenzitete združenih prvih treh laserskih nizov). Če uporabimo samo intenzitete LSS, listavce in iglavce lahko ločimo z uspešnostjo 81 %.

Ključne besede: lidar, intenziteta, geometrija drevesa, drevesne vrste, strojno učenje, odločitveno drevo