Abstract

The atmospheric precipitable water vapour (PWV) plays a crucial role in the hydrological cycle and energy transfer on a global scale. Radiosonde (RS), sunphotometer (SP) and GPS (as well as broader GNSS) receivers have gradually been the principal instruments for ground-based PWV observation. This study first co-locates the observation stations configured the three instruments in the globe and in three typical latitudinal climatic regions respectively, then the PWV data from the three instruments are matched each other according to the observing times. After the outliers are removed from the matched data pairs, the PWV intercomparisons for any two instruments are performed. The results show that the PWV estimates from any two instruments have a good agreement with very high correlation coefficients. The latitude and climate have no significant influence on the PWV measurements from the three instruments, indicating that the instruments are very stable and depend on their performance. The PWV differences of any two instruments display the normal distribution, indicating non-systematic biases among the two PWV datasets. The relative differences between SP and GPS are the smallest, the middle between SP and RS, and those between GPS and RS are the largest. This study will be useful to promote GPS (GNSS) and SP PWV to be a substitute for RS PWV as a benchmark because of their high temporal resolutions.

Key words: intercomparison, precipitable water vapour, sunphotometer, GPS, radiosonde