ANALIZA GEOSTATISTIČNEGA MODELA POVRŠJA ZA VIŠINSKO TRANSFORMACIJO GPS: ŠTUDIJA PRIMERA NA OBMOČJU IZMIRJA V TURČIJI
ANALYSIS OF GEOSTATISTICAL SURFACE MODEL FOR GPS HEIGHT TRANSFORMATION: A CASE STUDY IN IZMIR TERRITORY OF TURKEY

Metin Soycan

DOI: 10.15292/geodetski-vestnik.2013.04.702-718

 

Izvleček:

V članku je obravnavano vrednotenje geostatističnega modela ploskve za pretvorbo elipsoidnih višin, pridobljenih z meritvami GPS, v ortometrične višine. V raziskavi je bilo uporabljenih 1148 referenčnih točk, katerih višine so bile določene z geometričnim nivelmanom in meritvami GPS. Zajeto je območje velikosti 115 x 112 kilometrov v okviru projekta »Geodetska infrastruktura območja Izmir za izdelavo digitalnih fotogrametričnih zemljevidov in ortofotov v merilu 1 : 5000«. Osnovne podatke pomenijo razlike med elipsoidnimi in ortometričnimi višinami, ki so modelirane z metodo geostatistične interpolacije, in sicer krigingom. Uporabili smo programsko orodje ArcGIS 10.0 ’Geostatistical Analyst’ z optimiziranimi parametri modeliranja. Kakovost modela je bila analizirana z navzkrižnim preverjanjem, delitvijo podatkov in njihovim zunanjim preverjanjem. Ocenjena natančnost modela je približno 5 cm absolutno in približno 1 ppm relativno. Tudi skladnost modela z drugimi modeli geoida, in sicer z modeloma TG03 (turški geoid 2003) in EGM08 (Earth Gravitational Model 2008), znaša približno 7–10 cm.

Ključne besede: GPS-nivelman, interpolacija, kriging, geoid

 

Abstract:

The purpose of this study is evaluation of geostatistical surface model for transformation of GPS derived ellipsoidal heights to orthometric heights. The model was handled as its accuracy for surveying applications. 1148 reference points were used covering an area of 115×112 km with GPS and leveling data from the "Izmir geodetic infrastructure for the production of 1/5000 scaled digital photogrammetric maps and orthophotos" project. As a basic data, the differences between ellipsoidal and orthometric heights for each benchmarks were modeled by geostatistical interpolation method namely kriging. ArcGIS 10.0 Geostatistical Analyst was used with optimized
parameters for modeling. The quality of the model was analysed by Cross Validation, splitted data and external data validation. The model provide about ± 5 cm absolute, 1 ppm relative accuracy. Also the consistency of the model with several geoid models namely TG03 (Turkish Geoid 2003) and EGM08 (Earth Gravitational Model 2008) geoids was approximately ± 7-10 cm.

Keywords: GPS-leveling, interpolation, kriging, geoid

 

Literatura / References:

Abbak R.A., Sjöberg L.E., Ellmann A., Ustun A., (2012). A precise gravimetric geoid model in a mountainous area with scarce gravity data: a case study in central Turkey. Studia Geophysica et Geodaetica. 56- 4, 909-927.
http://dx.doi.org/10.1007/s11200-011-9001-0
http://link.springer.com/article/10.1007%2Fs11200-011-9001-0

Ayan, T., Deniz, R., Celik, R. N., Denli, H., Ozludemir, T., Erol, S., Ozoner, B., Akyilmaz, O. and Guney, C., (2001). Izmir Geodetic Reference System–2001. Istanbul Technical University, Report No. ITU 2000/2294. 39–54.

Benahmed Dahoa, S.A., Fairheadb, J.D. (2007). Accuracy assessment of the available geoid models in Algeria. Computers & Geosciences 33, 76–82.
http://dx.doi.org/10.1016/j.cageo.2006.05.009
http://www.sciencedirect.com/science/article/pii/S0098300406000975

Chen Y., Luo Z., Kwok S. (2003). Precise Hong Kong Geoid HKGEOID-2000. Journal of Geospatial Engineering, Vol. 5, No.2 , pp.35-41.

Corchete ,V., (2010). The high-resolution gravimetric geoid of Italy: ITG2009. Journal of African Earth Sciences. Vol.58, Issue 3, 580–584
http://dx.doi.org/10.1016/j.jafrearsci.2010.05.010
http://www.sciencedirect.com/science/article/pii/S1464343X10000944

Erol, B., Erol, S., Çelik, R. N., (2008). Height transformation using regional geoids and GPS/levelling in Turkey, Survey Review, 40-307, 2-18.
http://dx.doi.org/10.1179/003962608X253394
http://www.maneyonline.com/doi/abs/10.1179/003962608X253394

Featherstone, W. E., Sproule, D. M., (2006). Fitting Ausgeoid98 to the Australian height datum using GPS-levelling and least squares collocation: application of a cross-validation technique. Survey Review 38-301, 574-582.

Featherstone, W.E., (2001). Absolute and relative testing of gravimetric geoid models using Global Positioning System and orthometric height data. Computers & Geosciences 27, 807–814.
http://dx.doi.org/10.1016/S0098-3004(00)00169-2
http://www.sciencedirect.com/science/article/pii/S0098300400001692

Gonçalves G., (2006). Analysis of Interpolation Errors in Urban Digital Surface Models Created from Lidar Data. 7th International Symposium on Spatial Accuracy Assessment in Natural Resources and Environmental Sciences, ed. M. Caetano and M. Painho, , pp. 160–168.

IAG (International Association of Geodesy), (1995). New Geoids in the world. Bulletin d’information N.77. Iges Bulletin N.4 Special Issue.

Kiamehr, R. and Sjoberg, L.E., (2005). Comparison of the qualities of recent global and local gravimetric geoid model in Iran. Studia Geophysica et Geodaetica, 49: 289-304.
http://dx.doi.org/10.1007/s11200-005-0011-7
http://link.springer.com/article/10.1007%2Fs11200-005-0011-7

Kilicoglu A., Direnc A., Simav M., Lenk O., Aktug B., Yildiz H.,(2009). Evaluation of the Earth Gravitational Model 2008 in Turkey. Bureau Gravimétrique International. International Geoid Service Joint Bulletin (Newton’s Bulletin). External Quality Evaluation Reports of EGM08. 164-171.

Koler B., M Klemen., Kuhar M., (2007). Towards a new height system in Slovenia. Geodetski Vestnik Volume: 51 Issue: 4 Pages: 777-792.

Kotsakis, C., Katsambalos, K., (2010). Quality analysis of global geopotential models at 1542 GPS/levelling benchmarks over the Hellenic mainland. Survey Review 42-318, 327-344.
http://dx.doi.org/10.1179/003962610X12747001420500
http://www.maneyonline.com/doi/abs/10.1179/003962610X12747001420500

Kuhar M., Berk S., Koler B., Medved K., Omang O., Solheim D., (2011). The quality role of height system and geoid model in the realization of GNSS heighting. Geodetski Vestnik Vol. 55/ No. 2 (226-234)

Kühtreiber N. (2002). High Precision Geoid Determination of Austria Using Heterogeneous Data. International Association of Geodesy. Section III - Determination of the Gravity Field. 3rd Meeting of the International Gravity and Geoid Commission.Gravity and Geoid 2002 - GG2002. ed. I.N. Tziavos (144-151)

Li Y. C., Sideris M.G. (1994). Minimization and estimation of geoid undulation errors. Bulletin Geodesique 68:201-219
http://dx.doi.org/10.1007/BF00808101
http://link.springer.com/article/10.1007%2FBF00808101

Marko G, Kuhar M., (2008). GPS levelling using the RTK method of surveying. Geodetski Vestnik. Volume: 52 Issue: 2 Pages: 329-338.

Moritz, H.,(1980). Advanced Physical Geodesy. Herbert Wichmann Verlag, Karlsruhe. 500 pages.

Rapp, R.H.,(1992). Computation and Accuracy of Global Geoid Undulation Models. In Proceedings Symposium 6. International Geodetic Symposium on Satellite Positioning, Columbus, Ohio.

Solheim, D. (2000). New height reference surfaces for Norway. In: J. A. Torres and H. Hornik (Ed.). Report on the Symposium of the IAG Subcommission for Europe (EUREF), TromsŘ, 22.–24. June 2000. Veröffentlichungen der Bayerischen Kommission für die Internationale Erdmessung, Astronomisch-Geodätische Arbeiten, zv. 61, pp. 154–158. Bayerische Akademie der Wissenschaften, München.

Soycan A., Soycan M., (2009). Digital Elevation Model Production from Scanned Topographic Contour Maps via Thin Plate Spline Interpolation, Arabian Journal for Science and Engineering, Vol. 34, Issue 1, pp. 121-134.

Soycan, M., (2006a). Determination of Geoid Heights by GPS and Precise Trigonometric Levelling. Survey Review 38-299, 387-396.
http://dx.doi.org/10.1179/sre.2006.38.299.387
http://www.maneyonline.com/doi/abs/10.1179/sre.2006.38.299.387

Soycan, M., (2006b). Determination of geoid surface by GPS-levelling and radial basis function interpolation for local area. In Proceedings Symposium Fifth International Symposium Turkish-German Joint Geodetic Days, Berlin, Germany (on CDROM)

Soycan, M., Soycan A., (2003). Surface Modeling for GPS-Levelling Geoid Determination. International Geoid Service 1-1, 41-51.

Stopar, B., Ambrožič, T., Kuhar, M. in Turk, G. (2006). GPS-derived geoid using artificial neural network and least squares collocation. Survey Review 38, 300: 513–524.
http://dx.doi.org/10.1179/sre.2006.38.300.513
http://www.maneyonline.com/doi/abs/10.1179/sre.2006.38.300.513

Tomczak, M., (1998). Spatial interpolation and its uncertainty using automated anisotropic inverse distance weighting (IDW)—crossvalidation/jackknife approach. J. Geographic Inf. Decis. Anal. 2, 18–30.

Torge, W., (1980). Geodesy. Walter de Gruyter, Berlin New York, 134–137.

Tóth, Gy., Rózsa, Sz., Andritsanos, V.D., Ádám, J., Tziavos, I.N., (2000). Towards a cm–Geoid for Hungary: Recent Efforts and Results. Phys. Chem. Earth (A), 25:1:47–52
http://dx.doi.org/10.1016/S1464-1895(00)00008-9
http://www.sciencedirect.com/science/article/pii/S1464189500000089

TUTGA-99A (Turkish National Fundamental GPS Network-1999A). General Command of Mapping. Harita Dergisi. Special Issue. No: 16……………

Ustun, A., Demirel, H., (2006). Long-Range Geoid Testing by GPS-Leveling Data in Turkey. Journal of Surveying Engineering, 132-1. 15-23.
http://dx.doi.org/10.1061/(ASCE)0733-9453(2006)132:1(15)
http://ascelibrary.org/doi/abs/10.1061/%28ASCE%290733-9453%282006%29132%3A1%2815%29

Vanicek, P., and A. Kleusberg (1987). The Canadian geoid—Stokesian approach. Manuscripta Geodaetica 12, 86-98.

Vieira S.R, Carvalho J.R.P, Gonzalez, A. P. (2010). Jack knifing for semivariogram validation. Bragantia- [online]. vol.69, pp. 97-105.
http://dx.doi.org/10.1590/S0006-87052010000500011
http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0006-87052010000500011&lng=en&nrm=iso&tlng=en

http://www.iugg.org/members/nationalreports/turkey.pdf

http://earth-info.nga.mil/GandG/wgs84/gravitymod/egm2008/ - Access date: 10-10-2012

http://www.esri.com/software/arcgis/extensions/geostatistical