DASIMETRIČNO MODELIRANJE DINAMIKE PREBIVALSTVA NA URBANIH OBMOČJIH
DASYMETRIC MODELLING OF POPULATION DYNAMICS IN URBAN AREAS

Branislav Bajat, Nikola Krunić, Mileva Samardžić Petrović, Milan Kilibarda

DOI: 10.15292/geodetski-vestnik.2013.04.777-792

 

Izvleček:

Vprašanju razčlenjevanja javno dostopnih podatkov iz popisa so se posvečali že številni raziskovalci. Sodobni načini hranjenja ter predstavitve prostorskih in družbeno-ekonomskih podatkov v okolju GIS so prinesli pomemben napredek v metodologiji. Pri tem je pomembno tudi, da je javno dostopnih veliko pomožnih zbirk podatkov (satelitski posnetki, tematske plasti, ki se nanašajo na rabo zemljišč in pokrovnost tal, itd.), ki se vse hitreje dopolnjujejo. Zbirke podatkov o pozidanosti tal so eden od razredov pomožnih zbirk podatkov o zemljiščih, ki so zaradi antropogenih vplivov postala vodotesna, ter pričajo o stopnji prostorskega razvoja in prostorskih vsebinah, ki se povezujejo z razporeditvijo prebivalstva. Zbirka podatkov o pozidanosti tal je lahko v kombinaciji z dokumentacijo o načrtovanju mesta koristno orodje za dasimetrično kartiranje prebivalstva, ki opisuje rabo tal in višino stanovanjskih zgradb. Rezultati takšnega kartiranja so uporabni pri spremljanju prostorsko-časovne dinamike prebivalstva med dvema popisoma.
V študiji je predstavljena metodologija, pri kateri je zbirka podatkov o pozidanosti tal kombinirana s pomožnimi podatki na testnem območju iz glavnega načrta Mesta Beograd, s podatki iz popisa iz leta 2002 in rezultati iz leta 2011. Preverjanje veljavnosti modela kaže, da je predlagana metodologija uporabna na močno urbaniziranih območjih.

Ključne besede: dasimetrično modeliranje, pozidanost tal, podatki iz popisa, višina zgradb, urbanistično načrtovanje

 

Abstract:

Solving the problem of publicly available census data disaggregation has preoccupied numerous researchers intensively. A noteworthy advance in the methodology was made thanks to the contemporary storage and presentation of spatial and socio-economic data in the GIS environment. It is also important that a large number of auxiliary databases (satellite images, theme layers pertaining to land use and land cover, etc.) are publicly available and are periodically supplemented at increasingly shorter time intervals. Soil sealing databases are another class of auxiliary databases that pertain to land areas which have, due to anthropogenic influences, become a water-impermeable layer and indicate the level of spatial development and spatial contents that correlate to the population distribution. The soil sealing database can be a useful tool for dasymetric mapping of population when combined with town planning documentation that describes land use and height of residential buildings. The results of such mapping can help monitor the spatio-temporal dynamics of population trends in periods between two censuses.
This study presents a methodology in which a soil-sealing database is combined with auxiliary data in a test area covered by the Master Plan of the Belgrade City, with census data from the year 2002 and the results of the year 2011. The results of the model validation indicate application of the proposed methodology in highly urbanised areas.

Keywords: dasymetric modelling, soil sealing, census data, building height, urban planning

 

Literatura / References:

Bajat, B., Krunić, N., Kilibarda, M., & Samardžić Petrović, M. (2011). Spatial Modelling of Population Concentration Using Geographically Weighted Regression Method. Journal of the Geographical Institute “Jovan Cvijic” SASA , 61(3), 151-167.
http://dx.doi.org/10.2298/IJGI1103151B
http://www.doiserbia.nb.rs/Article.aspx?ID=0350-75991103151B&AspxAutoDetectCookieSupport=1#.U80m3rGjIuI

Balk, D., & Yetman, G.(2004). The global distribution of population: Evaluating the gains in resolution refinement, documentation for GPWv3. Palisades, NY: CIESIN, Columbia.

Bengtsson, M., Shen, Y. and Oki, T. (2006). A SRES-based gridded global population dataset for 1990-2100. Population and Environment, 28(2), 113-131.
http://dx.doi.org/10.1007/s11111-007-0035-8
http://link.springer.com/article/10.1007%2Fs11111-007-0035-8

Berg, V.L. (1982). Urban Europe: A Study of Growth and Decline. Cost of Urban Growth, Vol. 4.

Bhaduri, B., Bright, E., Coleman, P. and Urban, M.L. (2007). LandScan USA : a high-resolution geospatial and temporal modeling approach for population distribution and dynamics. GeoJournal 69, 103–117.
http://dx.doi.org/10.1007/s10708-007-9105-9
http://link.springer.com/article/10.1007%2Fs10708-007-9105-9

Burghardt, W. (2006). Soil sealing and soil properties related to sealing. Geological Society, London, Special Publications 266, 117-124.
http://dx.doi.org/10.1144/GSL.SP.2006.266.01.09
http://sp.lyellcollection.org/content/266/1/117

DeMers, M.N. (1999). Fundamentals of Geographic Information Systems. (2nd ed.). New York: John Wiley.

Dobson, J.E., Bright, E.A., Coleman, P.R., Durfee, R. and Worley, B.A. (2000). Landscan: A global population database for estimating populations at risk. Photogrammetric Engineering & Remote Sensing 66: 849-857.

de Lima, M.V.N., Bielski, C. and Nowak, J. (2007). IMAGE2006: A component of the GMES precursor fast track service on land monitoring, Proceedings of Geoscience and Remote Sensing Symposium IGARSS 2007, Barcelona, Spain, July 23-27, 2007, 2669-2672.

European Environmental Agency (2010). Raster data set of built-up and non built-up areas including continuous degree of soil sealing ranging from 0 - 100% in aggregated spatial resolution (100 x 100 m)
http://www.eea.europa.eu/data-and-maps/data/eea-fast-track-service-precursor-on-land-monitoring-degree-of-soil-sealing-100m-1 Accessed 20 September 2012.

European Environmental Agency (2012). GIO land briefing http://www.eea.europa.eu/about-us/what/seis-initiatives/gio-land-briefing-1/view Accessed 15 June 2012.

Fotheringham, A.S., Brunsdon, C. and Charlton, M. (2002). Geographically Weighted Regression: The analysis of spatially varying relationships. Chicester, Wiley.

Gallego, F.J. (2010). A population density grid of the European Union. Popul Environ. 31, 460–473.
http://dx.doi.org/10.1007/s11111-010-0108-y
http://link.springer.com/article/10.1007%2Fs11111-010-0108-y

Hyndman, R.J. (2006). Another look at forecast accuracy metrics for intermittent demand. Foresight: the international journal of applied forecasting 4, 43-46.

Kranjčević, J. (2007). Some considerations on spatial integration processes. Geodetski vestnik, 51(2), 270-275.

Krunić, N., Bajat, B., Kilibarda, M. and Tošić, D. (2011). Modelling the Spatial Distribution of Vojvodina’s Population by Using Dasymetric Method. Spatium 24, 45-50

Klaasen, L., Molle, W., Paelinck, J. (1981). Dynamic of Urban Development, New York, St. Martin Press.

Kocabas, V., Dragicevic, S. (2013). Bayesian networks and agent-based modeling approach for urban land-use and population density change: a BNAS model. Journal of Geographical Systems. 15(4), 403-426.
http://dx.doi.org/10.1007/s10109-012-0171-2
http://link.springer.com/article/10.1007%2Fs10109-012-0171-2

Langford, M. (2007). Rapid facilitation of dasymetric-based population interpolation by means of raster pixel maps. Computers, Environment and Urban Systems, 31(1), 19-32
http://dx.doi.org/10.1016/j.compenvurbsys.2005.07.005
http://www.sciencedirect.com/science/article/pii/S0198971506000330

Li T., Pullar D.V., Corcoran, J. and Stimson, R.J. (2007). A comparison of spatial disaggregation techniques as applied to population estimation for south east Queensland (SEQ), Australia. Applied GIS 3(9), 1-16

Linard, C., Gilbert, M. and Tatem, A.J. (2011). Assessing the use of global land cover data for guiding large area population distribution modeling. GeoJournal, 76, 525–538
http://dx.doi.org/10.1007/s10708-010-9364-8
http://link.springer.com/article/10.1007%2Fs10708-010-9364-8

Lwin, K., Murayama, Y. (2009). A GIS Approach to Estimation of Building Population for Micro-spatial Analysis. Transactions in GIS 13(4), 401–414
http://dx.doi.org/10.1111/j.1467-9671.2009.01171.x
http://onlinelibrary.wiley.com/doi/10.1111/j.1467-9671.2009.01171.x/abstract;jsessionid=A5EB27FE2FEB7F9BA84A2A028D14D061.f03t04

Maantay, J.A., Maroko, A.R. and Herrmann, C. (2007). Mapping population distribution in the urban environment: the cadastral-based expert dasymetric system (CEDS). Cartography & Geographic Information Science 34(2), 77-102
http://dx.doi.org/10.1559/152304007781002190
http://www.tandfonline.com/doi/abs/10.1559/152304007781002190#.U80rkbGjIuI

Morton, T.A., Yuan, F. (2009). Analysis of population dynamics using satellite remote sensing and US census data. Geocarto International 24 (2), 143-163
http://dx.doi.org/10.1080/10106040802460715
http://www.tandfonline.com/doi/abs/10.1080/10106040802460715#.U80sMrGjIuI

Maucha, G., Büttner, G. and Kosztra B. (2011). European validation of GMES FTS Soil Sealing Enhancement data, Proceedings of 31st EARSeL Symposium and 35th General Assembly 30th May - 2nd June 2011/ available on http://www.conferences.earsel.org/abstract/show/2764/

Mennis, J. (2003). Generating surface models of population using dasymetric mapping. The Professional Geographer, 55(1), 31–42.

Mennis, J. (2009). Dasymetric mapping for estimating population in small areas. Geography Compass 3(2),727–745.
http://dx.doi.org/10.1111/j.1749-8198.2009.00220.x
http://onlinelibrary.wiley.com/doi/10.1111/j.1749-8198.2009.00220.x/abstract

Petrić, J., Maričić, T., Basarić, J. (2012). The population conundrums and some implications for urban development in Serbia. Spatium 28, 7-14.

Reibel, M. (2007). Geographic information systems and spatial data processing in demography: A review. Population Research and Policy Review, 26, 601-618.
http://dx.doi.org/10.1007/s11113-007-9046-5
http://link.springer.com/article/10.1007%2Fs11113-007-9046-5

Statistical Office of the Republic of Serbia (2003). Census of population, Households and Dwellings in the Republic of Serbia-First results, Statistical Office of the Republic of Serbia, Belgrade.

Statistical Office of the Republic of Serbia (2011). 2011 Census of population, Households and Dwellings in the Republic of Serbia-First results, Statistical Office of the Republic of Serbia, Belgrade.

Steinnocher, K., Kaminger, I., Köstl, M. and Weichselbaum, J. (2010). Gridded Population – new data sets for an improved disaggregation approach.
http://www.gmes-geoland.info/fileadmin/geoland2/redakteur/pdf/Achievements/gridded_population_corine.pdf

Sutton, P., Roberts, D., Elvidge, C., and Baugh, K. (2001). Census from heaven: An estimate of the global human population using nighttime satellite imagery. International Journal of Remote Sensing, 22, 3061–76.
http://dx.doi.org/10.1080/01431160010007015
http://www.tandfonline.com/doi/abs/10.1080/01431160010007015#.U80tFbGjIuI

Sutton, P.C., Elvidge, C., Obremski, T. (2003). Building and evaluating models to estimate ambient population density. Photogrammetric Engineering and Remote Sensing 69, 545–53.
http://dx.doi.org/10.14358/PERS.69.5.545
http://essential.metapress.com/content/9872t636824qk07j/?genre=article&id=doi%3a10.14358%2fPERS.69.5.545

Tobler, W. R. (1979). Smooth pycnophylactic interpolation for geographical regions. Journal of the American Statistical Association, 74, 519–30.
http://dx.doi.org/10.1080/01621459.1979.10481647
http://www.tandfonline.com/doi/abs/10.1080/01621459.1979.10481647#.U80tdLGjIuI

Tošić, D. (2012). Principi regionalizacije, Geografski fakultet Univerziteta u Beogradu (in Serbian)

Vojković, G., Miletić, R. and Miljanović, D. (2010). Recent demographic-economic processes in the Belgrade agglomeration. Journal of the Geographical Institute “Jovan Cvijic” SASA ” 90(1), 215-235.

Wright, J.K. (1936). A method of mapping densities of population with Cape Cod as an example. Geographical Review 26, 103-10.
http://dx.doi.org/10.2307/209467
http://www.jstor.org/discover/10.2307/209467?uid=3739008&uid=2&uid=4&sid=21104512816313

Wu C., Murray, A.T. (2005). A cokriging method for estimating population density in urban areas. Computers, Environment and Urban Systems 29 (5), 558–579.
http://dx.doi.org/10.1016/j.compenvurbsys.2005.01.006
http://www.sciencedirect.com/science/article/pii/S0198971505000074

Wu C., Murray, A.T. (2007). Population Estimation Using Landsat Enhanced Thematic Mapper Imagery. Geographical Analysis 39, 26–43.
http://dx.doi.org/10.1111/j.1538-4632.2006.00694.x
http://onlinelibrary.wiley.com/doi/10.1111/j.1538-4632.2006.00694.x/abstract

Yang, X., Jiang, G., Luo, X. and Zheng, Z. (2012). Preliminary mapping of high-resolution rural population distribution based on imagery from Google Earth: A case study in the Lake Tai basin, eastern China. Applied Geography 32, 221-227.
http://dx.doi.org/10.1016/j.apgeog.2011.05.008
http://www.sciencedirect.com/science/article/pii/S0143622811000907

Zandbergen, P.A. (2011). Dasymetric Mapping Using High Resolution Address Point Datasets, Transactions in GIS 15(S1), 5–27.
http://dx.doi.org/10.1111/j.1467-9671.2011.01270.x
http://onlinelibrary.wiley.com/doi/10.1111/j.1467-9671.2011.01270.x/abstract