ALGORITEM ZA PREPOZNAVANJE KRAŠKIH KOTANJ NA PODLAGI DIGITALNEGA MODELA RELIEFA
ALGORITHM FOR KARST DEPRESSION RECOGNITION USING DIGITAL TERRAIN MODELS

Jaroš Obu, Tomaž Podobnikar

DOI: 10.15292/geodetski-vestnik.2013.02.260-270

 

Izvleček:

Algoritem samodejnega prepoznavanja kraških kotanj deluje na podlagi digitalnega modela reliefa (DMR) in večinoma temelji na analizah s premikajočim se lokalnim oknom velikosti 3 x 3 celice. Razdeljen je na štiri dele: računanje porečij, omejevanje kotanj, omejevanje kotanj višjega reda in izločanje nekraških kotanj. Jedro izdelanega algoritma je, da so kotanje omejene z višino najnižje robne celice porečja. Kotanje višjega reda pa so prepoznane z algoritmom zalivanja predhodno prepoznanih kotanj. Uspešnost algoritma je bila preizkušena na testnem območju Krasa na DMR-jih s prostorsko ločljivostjo 12,5 metra in 3 metre. Pokazalo se je, da so rezultati precej odvisni od več lastnosti in kakovosti DMR-ja, predvsem od prostorske ločljivosti.

Ključne besede: kraške kotanje, geomorfometrija, GIS, DMR, prostorske analize

 

Abstract:

An algorithm of automated karst depression recognition uses a digital terrain model (DTM) and mainly applies the methods of a moving window with a kernel size of 3 × 3 cells using focal functions. It is divided into four parts: watershed calculation, depression delineation, higher level depression delineation and elimination of non-karst depressions. The essential part of the algorithm is the delineation of depression by the elevation of the lowest border cell of watershed. Depressions at higher levels are recognised by filling previously recognised depressions. The performance of algorithm was tested on test area in the Kras region (Slovenia) using DTMs with a spatial resolution of 12.5 m and 3 m. The results mainly depend on the DTM characteristics and quality, especially of their spatial resolution.

Keywords: karst depressions, geo-morphometry, GIS, DTM, spatial analysis

 

Literatura / References:

ArcGIS (2009). Datoteka za pomoč pri uporabi programskega paketa ArcGIS 9.3 (Help).

Burrough, P. A., McDonnell, R. A. (1998). Principles of geographical information systems. Oxford: Oxford University Press.

Evans, I. S. (1972). General Geomophometry, derivatives of altitude and descriptive statistics. V: R. V. Chorley (ur.), Spatial Analysis in Geomorphology. London: British Geomorphological Research Group.

Digitalni model reliefa 12,5 (2005). Ljubljana: Geodetska uprava Republike Slovenije.

Državna pregledna karta 1: 250.000 (2011). Ljubljana: Geodetska uprava Republike Slovenije.

Gams, I. (2004). Kras v Sloveniji v prostoru in času. Ljubljana: Založba ZRC.

Guimar~aes, R. F., de Carvalho Júnior, O. A., de Souza Martins, A., Ferreira de Carvalho, A. P., Trancoso Gomes, R. A. (2005). Detection of karst depression by ASTER image in the Bambui Group, Brazil. V: Proceedings of the SPIE 5983. Brugge: College of Europe Press, 328–339.

Habič, P. (1986). Površinska razčlenjenost Dinarskega krasa. Acta carsologica, 14(15), 39–58.    

Jenson, S. K., Domingue, J. O. (1988). Extracting Topographic Structure from Digital Elevation Data for Geographic Information System Analysis. Photogrammetric Engineering and Remote Sensing, 54(11), 1593–1600.

Kobler, A., Ogrinc, P. (2007). Rein algorithm and the influence of point cloud density on NDSM and DEM precision in a submediterranean forest. IAPRS Volume XXXVI(3), 216–220.

Krevs, M. (1992). Iskanje lokalnih ekstremov na DMR / The recognition of local surface extremes on DEM. Geografski vestnik 64, 205–218.

Kunaver, J. (1983). Geomorfološki razvoj Kaninskega pogorja s posebnim ozirom na glaciokraške pojave. Geografski zbornik, 22, 197–346.

MacMillan, R. A., Shary, P. A. (2009). Landforms and Landform Elements in Geomorphometry. V: T. Hengl, H. I. Reuter (ur.) Geomorphometry – Concepts, Software, Applications. Oxford: Elsevier.

Mark, D. M. (1988). Network Models in Geomorphology. V: M. G. Anderson (ur.) Modelling in Geomorphological Systems. New York: John Wiley.

Mihevc, A., Prelovšek, M., Zupan Hajna, N. (2010). Introduction to the Dinaric Karst. Postojna: Inštitut za raziskovanje krasa ZRC SAZU.

Obu, J. (2011). Prepoznavanje kraških kotanj na podlagi digitalnega modela višin. Diplomsko delo. Ljubljana: Filozofska fakulteta.

Ortar, J. (2011). Tipizacija in regionalizacija slovenskih mrazišč. Diplomsko delo. Ljubljana: Filozofska fakulteta.

Podobnikar, T. (2005). Production of integrated digital terrain model from multiple datasets of different quality. International Journal of Geographical Information Science, 19(1), 69–89.
http://dx.doi.org/10.1080/13658810412331280130
http://www.tandfonline.com/doi/abs/10.1080/13658810412331280130#.U8U_xrGjIuI

Podobnikar, T. (2012). Detecting Mountain Peaks and Delineating Their Shapes Using Digital Elevation Models, Remote Sensing and Geographic Information Systems Using Autometric Methodological Procedures. Remote Sensing, 4,784–809.
http://dx.doi.org/10.3390/rs4030784
http://www.mdpi.com/2072-4292/4/3/784

Podobnikar, T., Székely, B. (2008). Poskus analize potencialno nevarnih vršajev z DMR-jem. V: D. Perko et al. (ur.) Geografski informacijski sistemi v Sloveniji 2007–2008. Ljubljana: Založba ZRC, 73–81.

Siart, C., Bubenzer, O., Eitel, B. (2009). Combining digital elevation data (SRTM/ASTER), high resolution satellite imagery (Quickbird) and GIS for geomorphological mapping: A multi-component case study on Mediterranean karst in Central Crete. Geomorphology, 112(1-2), 106–121.
http://dx.doi.org/10.1016/j.geomorph.2009.05.010
http://www.sciencedirect.com/science/article/pii/S0169555X09002189

Suma, A., Prieto, F. J. G., Domenico de Cosmo, P. (2010). Detection and mapping of karst depressions through remote sensing approach: an example from Sierra de Libar. V: »Classical karst«. 18th international karstological school. Postojna: Inštitut za raziskovanje krasa, 63.

Šušteršič, F. (1986). Zaprte kraške globeli, problematika interpretacije in kartografskega prikaza. Acta carsologica, 14(15), 89–98.