ANALIZA SAMODEJNE METODE ZA GENERIRANJE DIGITALNIH MODELOV RELIEFA IZ PODATKOV LIDAR NA OBMOČJU SLOVENIJE
THE ANALYS IS OF AN AUTOMATIC METHOD FOR DIGITAL TERRAIN MODEL GENERATION FROM LIDAR DATA ON SLOVENIAN TEST CASES

Domen Mongus, Mihaela Triglav Čekada, Borut Žalik

DOI: 10.15292/geodetski-vestnik.2013.02.045-259

 

Izvleček:

V članku analiziramo metodo izgradnje digitalnega modela reliefa iz podatkov lidar na testnih primerih z območja Slovenije. Ker obe metodi temeljita na konceptih matematične morfologije, podrobneje predstavimo eno, medtem ko uvodoma podamo splošen pregled del na obravnavanem območju. Rezultati pokažejo, da se z obema metodama pravilno določi teren v več kot 90 odstotkih, in sta zato obe primerni za uporabo tudi na geografsko tako razgibanem območju, kot je Slovenija. Čeprav je na ravninskih območjih njuna natančnost primerljiva, opisana metoda omogoča natančnejšo izgradnjo digitalnega modela reliefa predvsem na zahtevnejših, goratih območjih z relativno strmimi in spremenljivimi nakloni ter na območjih s terasami. Tudi v teh primerih povprečna absolutna višinska napaka ni večja od 15 centimetrov.

Ključne besede: lasersko skeniranje, lidar, digitalni model reliefa, daljinsko zaznavanje

 

Abstract:

This paper reviews two methods for digital terrain model generation from LiDAR data in test cases in Slovenia; both methods are based on concepts of mathematical morphology. A general overview of methods is given in the introduction, one of which is presented in more detail. The results show that both methods are able to correctly extract terrain points in more than 90% of the cases and are, therefore, suitable for usage even for such geographically diverse regions as Slovenia. Although the accuracy of both methods is comparable in cases of flat areas, the described method performs significantly better in problematic cases, such as hilly areas with relatively steep variable slopes, and terrains containing terraces. Even in these cases, the average absolute height error is not higher than 15 cm.

Keywords: laser scanning, lidar, digital terrain model, remote sensing

 

Literatura / References:

Brovelli, M. A., Cannata, M., Longoni, U. M. (2004). Lidar data filtering and DTM interpolation within GRASS. Transactions in GIS, 8(2), 155–174.
http://dx.doi.org/10.1111/j.1467-9671.2004.00173.x
http://onlinelibrary.wiley.com/doi/10.1111/j.1467-9671.2004.00173.x/abstract;jsessionid=6D2F9960A8DC661A549B76B974DE7161.f01t02

Chang, P. S., Lun, L. C., Shih, F. Y. (1997). An efficient class of alternating sequential filters in morphology. Graphical Models and Image Processing, 59(2), 109–116.
http://dx.doi.org/10.1006/gmip.1996.0416

Chen, Q., Gong, P., Baldocchi, D., Xie, G. (2007). Filtering airborne laser scanning data with morphological methods. Photogrammetric Engineering & Remote Sensing, 73(2), 175–185.
http://dx.doi.org/10.14358/PERS.73.2.175
http://essential.metapress.com/content/x59024q17l32x5u6/?genre=article&id=doi%3a10.14358%2fPERS.73.2.175

GURS, (2009). Tehnična dokumentacija, Aeroposnetki in ortofoto 2009–2010, http://www.gu.gov.si/fileadmin/gu.gov.si/pageuploads/JVN_08/Aeroposnetki_in_ortofoto_2009-2010/Razpisna_dokumentacija.pdf (28. 11. 2012).

Kraus, N., Pfeifer, N. (1998). Determination of terrain models in wooded areas with airborne laser scanner data. ISPRS Journal of Photogrammetry and Remote Sensing, 53(4), 193–203.
http://dx.doi.org/10.1016/S0924-2716(98)00009-4
http://www.sciencedirect.com/science/article/pii/S0924271698000094

Kobler, A., Pfeifer, N., Ogrinc, P., Todorovski, L., Oštir, K., Džerovski, S. (2007). Repetitive interpolation: a robust algorithm for DTM generation from aerial laser scanner data in forested terrain, Remote sensing of environment, 108(1), 9–23.
http://dx.doi.org/10.1016/j.rse.2006.10.013
http://www.sciencedirect.com/science/article/pii/S003442570600424X

Kolega, N., Žerjal, A., Krapež, B., Slavec, P. (2008). Uporaba lidarskih podatkov za občinsko prostorsko načrtovanje in upravljanje. Geografski informacijski sistemi v Sloveniji 2007–2008, 267–271.

Haugerud, R. A., Harding, D. J. (2001). Some algorithms for virtual deforestation (VDF) of LiDAR topographic survey data. International Archives of Photogrammetry and Remote Sensing, 34(3/W4), 211–218.

Kilian, J., Haala, N., Englich, M. (1996). Capture and evaluation of airborne laser scanner data. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 31(B3), 383–388.

Lee, H. S., Younan, N. (2003). DTM extraction of LiDAR returns via adaptive processing. IEEE Transactions on Geoscience and Remote Sensing, 41(9), 2063–2069.
http://dx.doi.org/10.1109/TGRS.2003.813849
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=1232220

Li, S. (2011). A filtering method for generating DTM based on multi-scale mathematic morphology. V: S. Hata (ur.), International Conference on Mechatronics and Automation (ICMA), 693–697, 2011. New York: IEEE.

Liu, X. (2008). Airborne LiDAR for DEM generation: some critical issues. Progress in Physical Geography, 32(1), 31–49. Lloyd, C. D. (2010). Local Models for Spatial Analysis (2nd ed.). Boca Raton: CRC Press.

Lukač, N., Žlavs, D., Seme, S., Žalik, B., Štumberger, G. (2013), Rating of roofs’ surfaces regarding their solar potential and suitability for PV systems, based on LiDAR data. Applied Energy, 102, 803–812.
http://dx.doi.org/10.1016/j.apenergy.2012.08.042

Mann, P. S. (2010). Introductory statistics (7th ed.). Hoboken (NJ): John Wiley & Sons Inc.

Mongus, D. (2012). Brezparametrični algoritem gradnje digitalnega modela reliefa iz podatkov Lidar. Doktorska disertacija. Maribor: Fakulteta za elektrotehniko, računalništvo in informatiko.

Mongus, D., Pečnik, S., Žalik, B. (2009). Efficient visualization of LiDAR datasets. V: Y. Toru (ur.), Proceedings of the IN STROKE 2009 International conference on optical instruments and technology, volume 7506-7513, 1–11. Washington: SPIE.

Mongus, D., Žalik, B. (2011). Efficient method for lossless LiDAR data compression. International Journal of Remote Sensing, 32(9), 2507–2518.
http://dx.doi.org/10.1080/01431161003698385
http://www.tandfonline.com/doi/abs/10.1080/01431161003698385#.U8U7P7GjIuJ

Mongus, D., Žalik, B. (2012). Parameter-free ground filtering of LiDAR data for automatic DTM generation. ISPRS Journal of Photogrammetry and Remote Sensing, 66(1), 1–12.
http://dx.doi.org/10.1016/j.isprsjprs.2011.10.002

Pfeifer, N., Reiter, T., Briese, C., Rieger, W. (1999). Interpolation of high quality ground models from laser scanner data in forested areas. International Archives of Photogrammetry and Remote Sensing, 32(3/W14), 31–36.

Podobnikar, T. (2008). Nadgradnja modela reliefa Slovenije z visokokakovostnimi podatki, Geodetski vestnik, 52(4), 834–853.

Podobnikar, T., Vrečko, A. (2012). Digital elevation model from the best results of different filtering of a LiDAR point cloud, Transactions in GIS, 16(5), 603–617.
http://dx.doi.org/10.1111/j.1467-9671.2012.01335.x
http://onlinelibrary.wiley.com/doi/10.1111/j.1467-9671.2012.01335.x/abstract

Qi, C., Gong, P., Baldocchi, D., Xie, G. (2007). Filtering airborne laser scanning data with morphological methods. Photogrammetric Engineering & Remote Sensing, 73(2), 175–185.

Shan, J., Sampath, A. (2005). Urban DEM generation from raw LiDAR data: A labeling algorithm and its performance. Photogrammetric Engineering & Remote Sensing, 71(2), 217–222.
http://dx.doi.org/10.14358/PERS.71.2.217
http://essential.metapress.com/content/d714nn6040301264/?genre=article&id=doi%3a10.14358%2fPERS.71.2.217

Shih, F. Y. (2009). Image processing and mathematical morphology: fundamentals and applications. Boca Raton: CRC Press.

Sithole, G. (2001). Filtering of laser altimetry data using a slope adaptive filter. International Archives of Photogrammetry and Remote Sensing, 34(3/W4), 203–210.

Sithole, G., Vosselman, G. (2004). Experimental comparison of filter algorithms for bare earth extraction from airborne laser scanning point clouds. ISPRS Journal of Photogrammetry and Remote Sensing, 59(1-2), 85–101.
http://dx.doi.org/10.1016/j.isprsjprs.2004.05.004
http://www.sciencedirect.com/science/article/pii/S0924271604000140

Triglav Čekada, M. (2011). Možnosti uporabe zračnega laserskega skeniranja (LIDAR) za geomorfološke študije, Geografski vestnik, 83(2), 81–93.

Triglav Čekada, M., Bric, V., Oven, K. (2012). Prvo vsedržavno lasersko skeniranje Slovenije. Geografski informacijski sistemi v Sloveniji 2011–2012, 191–196.

Vosselman, G. (2000). Slope based filtering of laser altimetry data. International Archives of Photogrammetry and Remote Sensing, 33, 935–942.

Wang, C., Tseng, Y. (2010). DEM generation from airborne LiDAR data by an adaptive dualdirectional slope filter. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 38(7B), 628–632.

Werbrouck, I., Antrop, M., Van Eetvelde, V., Stal, C., De Maeyer, P., Bats, M., Bourgeois, J., Court-Picon, M., Crombe, P., De Reu, J., De Smedt, P., Finke, P. A., Van Meirvenne, M., Verniers, J., Zwertvaegher, A. (2011). Digital elevation model generation for historical landscape analysis based on lidar data, a case study in Flanders (Belgium). Expert Systems with Applications, 38(7), 8178–8185.
http://dx.doi.org/10.1016/j.eswa.2010.12.162
http://www.sciencedirect.com/science/article/pii/S0957417410015253

Zhang, K. Q., Chen, S., Whitman, D., Shyu, M., Yan, J., Zhang, C. (2003). A progressive morphological filter for removing nonground measurements from airborne LiDAR data. IEEE Transactions on Geoscience and Remote Sensing, 41(4), 872–882.
http://dx.doi.org/10.1109/TGRS.2003.810682
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=1202973
    
Zhang, K., Whitman, D. (2005). Comparison of three algorithms for filtering airborne LiDAR data. Photogrammetric Engineering & Remote Sensing, 71(3), 313–324.
http://dx.doi.org/10.14358/PERS.71.3.313
http://essential.metapress.com/content/h1w1022876mu7438/?genre=article&id=doi%3a10.14358%2fPERS.71.3.313