ZAGOTAVLJANJE KAKOVOSTI GEOREFERENCIRANJA PODATKOV AEROLASERSKEGA SKENIRANJA ZA UPRAVLJANJE VODA
QUALITY ASSURANCE OF GEOREFERENCING AIRBORNE LASER SCANNING DATA FOR WATER RESOURCE MANAGEMENT

Vasja Bric, Sandi Berk, Mihaela Triglav Čekada

DOI: 10.15292/geodetski-vestnik.2013.02.271-285

 

Izvleček:

V prispevku je obravnavana problematika zagotavljanja kakovosti podatkov aerolaserskega skeniranja. Predstavljeni so delni rezultati projekta, imenovanega »Lasersko skeniranje in aerofotografiranje Slovenije 2011«. Opisani so postopki nadzora kakovosti rezultatov s poudarkom na georeferenciranju, ki bi ustrezalo merilom za njihovo uporabo pri upravljanju voda. Izpostavljeni so dejavniki, ki vplivajo na kakovost podatkov. Dosežena kakovost neposrednega georeferenciranja je ocenjena na podlagi izkušenj, pridobljenih pri nadzoru kakovosti rezultatov projekta. Obravnavana je tudi kakovost transformacij v državni ravninski in višinski referenčni sistem. Podana so priporočila za naknadno izboljšanje kakovosti podatkov, ki bo mogoče z vzpostavitvijo novega državnega višinskega referenčnega sistema in novega modela geoida.

Ključne besede: georeferenciranje, kakovost podatkov, upravljanje voda, lidar, aerolasersko skeniranje

 

Abstract:

This paper deals with the problems of quality assurance for airborne laser-scanning data. Partial results of the project entitled ‘Laser Scanning and Aerial Photographing of Slovenia 2011’ are presented, and the quality control procedure is described. The focus is on the quality assurance of the geo-referencing used for water resource management. Important issues with an impact on the quality of data are addressed and evaluated. The quality of direct geo-referencing was investigated, and some experiences gained in the quality control of the project results are presented. The quality of the transformation of data into the national horizontal and height reference systems is also discussed. Some recommendations for the quality improvement of airborne laser-scanning data are given. This will be possible with the realisation of the new national height reference system and with the creation of the new geoid model.

Keywords: airborne laser scanning, data quality, georeferencing, LiDAR, water resource management

 

Literatura / References:

Berk, S., Bajec, K., Kozmus Trajkovski, K., Stopar, B. (2011). Status of the SIGNAL Positioning Service and Transformation between the Local and ETRS89 Coordinates in Slovenia. 2. CROPOS konferencija, Zagreb, 8. april 2011. Zbornik radova, Državna geodetska uprava, Zagreb, 73–82.

Berk, S., Komadina, Ž. (2013). Local to ETRS89 Datum Transformation for Slovenia: Triangle-Based Transformation Using Virtual Tie Points. Survey Review, 45(328), 25–34.
http://dx.doi.org/10.1179/1752270611Y.0000000020
http://www.maneyonline.com/doi/abs/10.1179/1752270611Y.0000000020

Berk, S., Komadina, Ž., Marjanović, M., Radovan, D., Stopar, B. (2004). The Recomputation of the EUREF GPS Campaigns in Slovenia. Report on the Symposium of the IAG Subcommission for Europe (EUREF). Toledo, 4.–7. junij 2003. Reports of the EUREF Technical Working Group (TWG) – EUREF publication, št. 13. Mitteilungen des Bundesamtes für Kartographie und Geodäsie, zv. 33, Verlag des Bundesamtes für Kartographie und Geodäsie, Frankfurt na Majni, 132–149.

Csanyi, N., Toth, C. K. (2007). Improvement of LiDAR Data Accuracy Using LiDAR-Specific Ground Targets. Photogrammetric Engineering & Remote Sensing, 73(4), 385–396.    
http://dx.doi.org/10.14358/PERS.73.4.385
http://essential.metapress.com/content/e1971j0x17312269/?genre=article&id=doi%3a10.14358%2fPERS.73.4.385

Gosar, L., Rak, G., Steinman, F., Banovec, P. (2007). Z LiDAR tehnologijo zajeta topografija v hidravličnih analizah vodotokov. Gradbeni vestnik, 56(5), 115–123.

Habib, A. F., Al-Durgham, M., Kersting, A. P., Quackenbush, P. (2008). Error Budget of LiDAR Systems and Quality Control of the Derived Point Cloud. XXIst ISPRS Congress. Peking, 3.–11. julij 2008. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Science, letn. 37(B1), 203–209.

Hodgson, M. E., Bresnahan, P. (2004). Accuracy of Airborne LiDAR-Derived Elevation: Empirical Assessment and Error Budget. Photogrammetric Engineering & Remote Sensing, 70(3), 331–339.
http://dx.doi.org/10.14358/PERS.70.3.331
http://essential.metapress.com/content/6ql1538215762358/?genre=article&id=doi%3a10.14358%2fPERS.70.3.331

Höhle, J., Höhle, M. (2009). Accuracy Assessment of Digital Elevation Models by Means of Robust Statistical Methods. ISPRS Journal of Photogrammetry and Remote Sensing, 64(4), 398–406.
http://dx.doi.org/10.1016/j.isprsjprs.2009.02.003
http://vbn.aau.dk/en/publications/accuracy-assessment-of-digital-elevation-models-by-means-of-robust-statistical-methods%2815902cb0-f0d6-11dc-800f-000ea68e967b%29/export.html

Höhle, J., Pedersen, C. Ř. (2010). A New Method for Checking the Planimetric Accuracy of Digital Elevation Models Data Derived by Airborne Laser Scanning. Accuracy 2010 Symposium. Leicester, 20.–23. julij 2010. Proceedings of the Ninth International Symposium on Spatial Accuracy Assessment in Natural Resources and Environmental Sciences, University of Leicester, 253–256.

Huising, E. J., Gomes Pereira, L. M. (1998). Errors and Accuracy Estimates of Laser Data Acquired by Various Laser Scanning Systems for Topographic Applications. ISPRS Journal of Photogrammetry and Remote Sensing, 53(5), 245–261.
http://dx.doi.org/10.1016/S0924-2716(98)00013-6.
http://www.researchgate.net/publication/243334002_Errors_and_accuracy_estimates_of_laser_data_acquired_by_various_laser_scanning_systems_for_topographic_applications

Kager, H. (2004). Discrepancies between Overlapping Laser Scanning Strips: Simultaneous Fitting of Aerial Laser Scanner Strips. XXth ISPRS Congress. Istanbul, 12.–23. julij 2004. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Science, letn. 35(B1), 555–560.

Kenward, T., Lettenmaier, D. P., Wood, E. F., Fielding, E. (2000). Effects of Digital Elevation Model Accuracy on Hydrologic Predictions. Remote Sensing of Environment, 74(3), 432–444.
http://dx.doi.org/10.1016/S0034-4257(00)00136-X.
http://www.researchgate.net/publication/216840576_Effects_of_digital_elevation_model_accuracy_on_hydrologic_predictions

Koler, B., Medved, K., Kuhar, M. (2007). Uvajanje sodobnega višinskega sistema v Sloveniji. Geodetski vestnik, 51(4), 777–792.

Koler, B., Urbančič, T., Medved, K., Vardjan, N., Berk, S., Omang, O. C. D., Solheim, D., Kuhar, M. (2012). Novi višinski sistem Slovenije in testni izračun geoida. Raziskave s področja geodezije in geofizike 2011. Ljubljana, 26. januar 2012. Zbornik predavanj. Fakulteta za gradbeništvo in geodezijo, Ljubljana, 91–101.

Kuhar, M., Berk, S., Koler, B., Medved, K., Omang, O., Solheim, D. (2011). Vloga kakovostnega višinskega sistema in geoida za izvedbo GNSS-višinomerstva. Geodetski vestnik, 55(2), 226–234.

Legat, K., Skaloud, J., Schmidt, R. (2006). Reliability of Direct Georeferencing Phase 2: A Case Study on Practical Problems and Solutions. Checking and Improving of Digital Terrain Models. EuroSDR Official Publication, 51. Frankfurt na Majni, 169–184.

Liu, X. (2008). Airborne LiDAR for DEM Generation: Some Critical Issues. Progress in Physical Geography, 32(1), 31–49.
http://dx.doi.org/10.1177/0309133308089496

Liu, X. (2011). Accuracy Assessment of LiDAR Elevation Data Using Survey Marks. Survey Review, 43(319), 80–93.
http://dx.doi.org/10.1179/003962611X12894696204704
http://eprints.usq.edu.au/18261/

Mongus, D., Žalik, B. (2012). Parameter-Free Ground Filtering of LiDAR Data for Automatic DTM Generation. ISPRS Journal of Photogrammetry and Remote Sensing, 67(1), 1–12.
http://dx.doi.org/10.1016/J.ISPRSJ PRS.2011.10.002
http://adsabs.harvard.edu/abs/2012JPRS...67....1M

Podobnikar, T., Vrečko, A. (2012). Digital Elevation Model from the Best Results of Different Filtering of a LiDAR Point Cloud. Transactions in GIS, 16(5), 603–617.
http://dx.doi.org/10.1111/J.1467-9671.2012.01335.X.
http://onlinelibrary.wiley.com/doi/10.1111/j.1467-9671.2012.01335.x/abstract

Pribičević, B. (2000). Uporaba geološko-geofizičnih in geodetskih baz podatkov za računanje ploskve geoida Republike Slovenije. Doktorska disertacija. Univerza v Ljubljani, Fakulteta za gradbeništvo in geodezijo, Ljubljana.

Ressl, C., Kager, H., Mandlburger, G. (2008). Quality Checking of ALS Projects Using Statistics of Strip Differences. XXIst ISPRS Congress. Peking, 3.–11. julij 2008. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Science, letn. 37(B3b), 253–260.

Schaer, P., Skaloud, J., Landtwing, S., Legat, K. (2007). Accuracy Estimation for Laser Point Cloud Including Scanning Geometry. The 5th International Symposium on Mobile Mapping Technology (MMT2007). Padova, 29.–31. maj 2007. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Science, letn. 36(5/W8), 7 str.

Skaloud, J., Lichti, D. (2006). Rigorous Approach to Bore-Sight Self-Calibration in Airborne Laser Scanning. ISPRS Journal of Photogrammetry and Remote Sensing, 61(1), 47–59.
http://dx.doi.org/10.1016/J.ISPRSJ PRS.2006.07.003.
http://infoscience.epfl.ch/record/90832

Šantl, S., Rak, G. (2010). Analiza poplavne nevarnosti in odtočnega režima – uporaba različnih tipov hidravličnih modelov. Gradbeni vestnik, 59(6), 147–156.

Toth, C., Paska, E., Brzezinska, D. (2007). Using Pavement Markings to Support the QA/QC of LiDAR Data. Photogrammetric Image Analysis (PIA07). München, 19.–21. september 2007. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Science, letn. 36(3/W49B), 173–178.

Triglav Čekada, M. (2010). Zračno lasersko skeniranje in nepremičninske evidence. Geodetski vestnik, 54(2), 181–194.

Triglav Čekada, M., Bric, V., Oven, K. (2012). Prvo vsedržavno lasersko skeniranje Slovenije. Geografski informacijski sistemi v Sloveniji 2011–2012. Ljubljana, 25. september 2012. GIS v Sloveniji, 11. Založba ZRC, Ljubljana, 191–196.