IZVEDBA UNIVERZALNE ONTOLOGIJE GEOGRAFSKEGA PROSTORA V PODMNOŽICI PREDIKATNEGA RAČUNA PRVEGA REDA

Marjan Čeh, Domen Smole, Tomaž Podobnikar

DOI: 10.15292/geodetski-vestnik.2012.01.057-069

 

APPLICATION OF UNIVERSAL ONTOLOGY OF GEOGRAPHIC SPACE IN A SUBSET OF THE FIRST-ORDER PREDICATE CALCULUS

Marjan Čeh, Domen Smole, Tomaž Podobnikar

DOI: 10.15292/geodetski-vestnik.2012.01.070-082

 

Izvleček:

Prostorski podatkovni viri, kot so geodetski referenčni sistem, administrativne prostorske enote, naslovi in topografske teme, so v vseh prostorskih podatkovnih zbirkah podlaga za zajem podatkov in položajno umeščanje tematskih podatkov v prostoru. Temeljne strategije geodetske stroke za približevanje potrebam uporabnikov geodetskih podatkov v smislu povezovanja zbirk podatkov so v oblikovanju povezovalnega semantičnega referenčnega sistema v semantičnem spletu ali tako imenovanem spletu 3.0. V tem prispevku so prikazane možnosti za razvoj orodja za enostavnejše in bolj smiselno iskanje ter integracijo na spletu objavljenih prostorskih podatkov. Za rešitev težave je v raziskavah mogoče zaslediti predloge o nadgradnji sedanjih GIS kot sistemov z znanjem, predstavljenim v obliki ontologij. Gre torej za novo generacijo tehnologije GIS, ki jo nekateri imenujejo tudi pametni GIS. Za zdaj takšen GIS obstaja predvsem na teoretični, ne pa tudi na praktični ravni. V tem delu je predstavljena metoda za modeliranje ontologije geografskega prostora v podmnožici predikatnega računa prvega reda. Izdelano semantično omrežje prostora omogoča analize obstoječih zbirk podatkov za namene integracije v okolju porazdeljenih informacijskih sistemov. Naša izvedba temelji na metodah strojnega učenja in uporabi programskega jezika prolog.

Ključne besede: ontologija, semantični splet, geografski prostor, logika, predikatni račun

 

Abstract:

Spatial data sources, like the geodetic reference system, administrative spatial units, addresses and topographic maps, serve as a base for geo-referencing to the most of dependant thematic spatial databases. The marketing strategy of the surveying profession towards the users of spatial data infrastructure should be in the design of an
integrative semantic reference system to be used within the Semantic Web, or so-called Web 3.0. The main motivation for our research was the representation of possibilities to automate tool development for efficient and more sensible approaches to query information within web-published spatial data. In contemporary research there are several solutions offered as upgrades of basic GIS systems with the knowledge presented in the form of ontologies. Therefore, we are faced with the new generation of GIS technology, which has been named "inteligent GIS". In this article, we present method of modelling the semantic reference system as an application of the ontology of geographic space in the subset of first order predicate calculus. Such a semantic network of geographic space represents the foundation for semantic data analyses and data integration in distributed information systems. Our application is based on the methods of machine learning and use of the Prolog programming language.

Keywords: ontology, Semantic Web, geographic space, logic, predicate calculus

 

Literatura / References:

Berners-Lee, T. (2010). Long Live the Web, Scientific American, 303(6), 80–85.

Berners-Lee, T., Hendler, J., Lassila, O. (2001). The Semantic Web, Scientific American, 29–37.

Bratko, I. (2001). Prolog programming for artificial intelligence. 3rd ed. Harlow (England): Addison-Wesley.

Brickley, D., Guha, R. (2004). RDF Vocabulary Description Language 1.0: RDF Schema. W3C Recommendation; pridobljeno 1. 7. 2011 s spletne strani: http://www.w3.org/TR/2004/REC-rdf-schema-0040210.

Čeh, M. (2003). Semantična integracija zbirk prostorskih podatkov. Založba ZRC, ZRC SAZU Ljubljana.

Čeh, M., Podobnikar, T., Smole, D. (2004). Geodata - are they accessible and useful?. V: Toppen, F.(ur.). AGILE 7th conference on Geographic Information Science, Heraklion, Greece. Conference proceedings. Heraklion, 2004: Crete University, 789–794.

Čeh, M., Podobnikar, T., Smole, D. (2006). Semantic similarity measures within the semantic framework of the universal ontology of geographical space. V: Riedl, A. (ur.). Progress in spatial data handling : 12th International Symposium on Spatial Data Handling. Berlin [etc.]: Springer, 417–434.

Devogele, T., Parent, T., Spaccapietra, S. (1998). On spatial database integration. International Journal Geographic Information Science, 12(4), Taylor and Francis, London, Velika Britanija.
http://dx.doi.org/10.1080/136588198241824

Džeroski, S., Lavrač, N. (2001). An introduction to inductive logic programming. V: Džeroski, S., Lavrač, N. (ur.). Relational data mining. Berlin: Springer-Verlag, 48–73.
http://dx.doi.org/10.1007/978-3-662-04599-2_3

Egenhofer., M, Mark, D., (1995). Naive geography. COSIT ’95, LNCS 988, Springer Verlag, Berlin, Nemčija.

Ester, M., Kriegel, H., Sander, J. (1997). Spatial Data Mining: A Database Approach. Advances in Spatial Databases, 5th International Sympsium, SSD '97, Berlin, Nemčija.

Hayne, S., Ram., S. (1990). Multi-user View Integration System (MUVIS): An Expert System for View Integration. 6th IEEE Conference on data engineering, Los Angeles, ZDA.
http://dx.doi.org/10.1109/ICDE.1990.113493

Keim, D., Kriegel, H., Seidel., T. (1994). Supporting Data Mining of Large Databases by Visual Feedback Queries. Proceedings of IEEE 10th International Conference on Data Engineering, Houston, IEEE Comput. Soc. Press, Los Alamitos, California, ZDA.
http://dx.doi.org/10.1109/ICDE.1994.283045

Knorr, E., Ng, R., Shilvok, D. (1997). Finding Boundary Shape matching Realtionships in Spatial Data, Advances in Spatial Databases. 5th International Sympsium, SSD '97, Berlin, Nemčija.

Kononenko, I. (2005) Strojno učenje – 2. popravljena in dopolnjena izdaja, Fakulteta za računalništvo in informatiko, Ljubljana.

Leung, Y. (1997). Intelligent spatial decission support systems. Springer Verlag, Berlin, Nemčija.

Miller, H. J. (2008). Geographic Data Mining and Knowledge Discovery, The Handbook of Geographic Information Science, J. P. Wilson in A. S. Fotheringham (ur.), Blackwell Publishing Ltd, Oxford, Združeno kraljestvo.

Pivk, A., (2005). Avtomatska gradnja ontologij iz spletnih tabel. Doktorska disertacija, Univerza v Mariboru.

Podobnikar, T. Čeh. M. (2012 ). Preface V: Podobnikar, T. (ur.), Čeh. M. (ur.). Universal Ontology of Geographic Space: Semantic Enrichment for Spatial Data. IGI Global, 2012. 0-304. Web.
http://dx.doi.org/10.4018/978-1-4666-0327-1

Sester, K., Anders, K., Walter, V. (1998). Linking objects of different spatial data sets by integration and aggregation. Geoinformatica, 2(4). Kluwer Academic Publishers, Dordrecht, Nizozemska.
http://dx.doi.org/10.1023/A:1009705404707

Smole, D., Čeh, M., Podobnikar, T. (2011). Evaluation of Inductive Logic Programming for Information Extraction from Natural Language Texts to Support Spatial Data Recommendation Services. International Journal of Geographical Information Science.
http://dx.doi.org/10.1080/13658816.2011.556640

Spaccapietra, S., Parent, C., Dupont, Y. (1992). Model independent assertions for integration of heterogenious schemas. VLDB Journal, Vol. I, Springer Verlag, Nemčija.
http://dx.doi.org/10.1007/BF01228708

Vet, P., Mars, N. (1998). Bottom-up construciton of ontologies. IEEE Transactions on knowledge and data engineering, 10(4), IEEE Computer Society.
http://dx.doi.org/10.1109/69.706054

Zakon o zemljiškem katastru, Uradni list SRS, št. 16/74, UL SRS, št. 42/86.

Pravilnik o vodenju vrst rabe zemljišč v zemljiškem katastru , Uradni list UL SRS, št. 42/86.