
| 379 |

| 63/3 |

RE
CE

NZ
IRA

NI
 ČL

AN
KI 

| P
EE

R-
RE

VIE
W

ED
 AR

TIC
LE

S

V
G 2

0
1

9

GEODETSKI VESTNIK | letn. / Vol. 63 | št. / No. 3 |

SI 
 |  

EN

KLJUČNE BESEDE KEY WORDS

ABSTRACT IZVLEČEK 

Remote Sensing, Machine Learning, MAD, Boosting, 
AdaBoost, Machine Learning, Object-Based Image Analysis

daljinsko zaznavanje, strojno učenje, MAD, boosting, AdaBoost, 
strojno učenje, objektna analiza podob

UDK: 349.414:332.38:528.7 
Klasifikacija prispevka po COBISS.SI: 1.01

Prispelo: 6. 3. 2019
Sprejeto: 21. 8. 2019

DOI: 10.15292/geodetski-vestnik.2019.03.379-394
SCIENTIFIC ARTICLE
Received: 6. 3. 2019
Accepted: 21. 8. 2019

Jiří Šandera, Přemysl Štych

KARTIRANJE SPREMEMB 
RABE ZEMLJIŠČ IZ NJIVSKIH 

POVRŠIN V TRAJNE TRAVNIKE 
Z NAPREDNIMI METODAMI 

CHANGE DETECTION WORK-
FLOW FOR MAPPING CHANGES 
FROM ARABLE LANDS TO 
PERMANENT GRASSLANDS 
WITH ADVANCED BOOSTING 
METHODS

The necessity of mapping changes in land cover categories based 
on satellite imageries is a challenging task especially in terms of 
arable land and grasslands. The phenological phases of arable 
lands change quickly while grasslands is more stable. It might 
be hard to capture these changes regarding the spectral overlap 
between crops in full growth and grass itself. We have introduced 
a relatively simple processing workflow with good efficiency and 
accuracy. Our proposed method utilises the combination of a 
Multivariate Alteration Change Detection Algorithm and an 
existing boosting method, such as the AdaBoost algorithm with 
different weak learners and the most recent one – Extreme 
Gradient Boosting that is actually a relatively new approach 
in remote sensing. According to the results, the highest overall 
accuracy is 89.51 %. The proposed process workflow was tested 
on Landsat data with 30 m spatial resolution, using open-
source software: R and GRASS GIS, Orfeo Toolbox library.

Ugotavljanje sprememb rabe oziroma pokrovnosti zemljišč 
na satelitskih posnetkih je zahtevna naloga, še posebej pri 
spremembah iz njivskih v travniške površine. Fenološke faze 
njivskih površin se namreč spreminjajo zelo hitro, medtem ko so 
pri travnikih stabilnejše. Zaradi spektralne podobnosti poljščin 
v najvišji vegetacijski dobi in trav je zelo težko ločiti med 
njivami in travniki. V članku predstavljamo relativno preprost 
postopek za ugotavljanje sprememb njivskih površin v travnike 
z dobro učinkovitostjo in točnostjo. Pri predlagani metodi se 
uporablja kombinacija algoritma za prepoznavanje sprememb 
MAD (angl. multivariate alteration detection) in obstoječe 
metode strojnega učenja boosting, kot sta algoritma AdaBoost 
z različnimi šibkimi učenci in Extreme Gradient Boosting, 
ki je precej nov pristop na področju daljinskega zaznavanja. 
Glede na rezultate raziskave znaša točnost rezultatov 89,51 
%. Predlagani postopek je bil testiran na podatkih Landsat s 
30-metrsko prostorsko ločljivostjo, pri čemer je bila uporabljena 
prosto dostopna programska oprema: R in GRASS GIS ter 
knjižnica Orfeo Toolbox.

Jiří Šandera, Přemysl Štych | KARTIRANJE SPREMEMB RABE ZEMLJIŠČ IZ NJIVSKIH POVRŠIN V TRAJNE TRAVNIKE Z NAPREDNIMI METODAMI | CHANGE DETECTION WORKFLOW FOR MAPPING 
CHANGES FROM ARABLE LANDS TO PERMANENT GRASSLANDS WITH ADVANCED BOOSTING METHODS | 379-394 |



| 380 |

| 63/3 | GEODETSKI VESTNIK  
RE

CE
NZ

IRA
NI

 ČL
AN

KI 
| P

EE
R-

RE
VIE

W
ED

 AR
TIC

LE
S

SI 
| E

N

Jiří Šandera, Přemysl Štych | KARTIRANJE SPREMEMB RABE ZEMLJIŠČ IZ NJIVSKIH POVRŠIN V TRAJNE TRAVNIKE Z NAPREDNIMI METODAMI | CHANGE DETECTION WORKFLOW FOR MAPPING 
CHANGES FROM ARABLE LANDS TO PERMANENT GRASSLANDS WITH ADVANCED BOOSTING METHODS | 379-394 |

1 INTRODUCTION 

In terms of arable lands and permanent grasslands, it is not easy to capture changes with methods dedicated 
to remote sensing. Many crops in fields have a variable spectral response (Peng et al., 2013; Wang et al., 
2017). In the Czech Republic, permanent grasslands include many plant species. Definition of land cover 
category permanent grasslands is determined by LPIS (Land Parcel Identification System, www.lpis.eu). 
Permanent grasslands are defined as dedicated sort of agricultural lands, where grass species and other 
types of forage crops are grown longer than five years (Elbersen et al., 2014). A detailed description of 
common vegetation species including grasslands can be found in Vegetation Science Group (Vegetation 
Science Group, 2005). Capturing changes between the arable lands and permanent grasslands is a chal-
lenging task because the spectral response of grass species and cereal may overlap especially during the 
time of maximum growth in vegetation season (Pakzad et al., 2001). Permanent grasslands (Carleier et 
al., 2009) are a stable part of the landscape but arable lands are very variable due to crop rotation dur-
ing vegetation season (Esch et al., 2014). Therefore, there is a growing requirement in monitoring the 
changes between these land cover categories, especially when subsidies are taken into consideration due 
to biofuel management and decreasing biodiversity (Stoate et al., 2001; Stoate et al., 2009). 

Fast and accurate evaluations allow remote sensing technologies that enable one to monitor these changes 
in a short time and over large areas (Atzberger, 2013). They appear to be quite popular in discriminating 
crops and grasslands (Helmholz et al., 2014; Smith and Buckley, 2001; Müller et al., 2015). On the 
other hand, studies specially dedicated to mapping change transitions between crops and grassland are 
not so common (Weeks et al., 2014; Klouček et al., 2018; Yang et al., 2017). 

When changes between crops and permanent grasslands are to be mapped, it is better to be focused on 
land parcels where transitions from crops to permanent grasslands are more common. In addition to 
this fact, the focus on land parcels where investigated land cover changes occur leads to a higher level of 
accuracy (Lobo et al., 1996; Conrad et al., 2010). For now, several studies exist related to the monitoring 
of crops (Stefanski et al., 2013; Esch et al., 2014; Belgiu and Csillik, 2018) using high and moderate 
resolution optical images.

However, the most recent studies focus on the utilisation of multitemporal data (Chen et al., 2018; Yin et 
al., 2018; Pflugmacher et al., 2019; Xu et al., 2018). Mapping transitions between crops and grasslands 
that only utilises bitemporal data are quite rare (Helmholz et al., 2014; Yang et al., 2017; Klouček et al., 
2018). The advantage of using bi-temporal images is simplicity in the amount of data acquisition and 
speed of processing in comparison to image time series. 

In this study, we present hybrid change detection method based on MAD (Multivariate Alteration 
Detection) transformation (Nielsen et al., 1998) in connection with boosting methods that have the 
ability to reduce bias and variance (Breiman, 1996) in order to capture transitions from arable lands 
to permanent grasslands. The ability of boosting methods to reduce bias and variance might be very 
efficient in order to generalize crop phenology rotations. These parameters are requested when spectral 
fluctuations occur very often and they need to be reduced in order to obtain accurate results. This is 
especially in the case when mapping vegetated areas with changes between them. In order to monitor 
changes from arable lands to permanent grasslands we have chosen study area (See section 2) in the 
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north of the Czech Republic where these changes are certain. This fact was validated by the overlaying 
of vector layers from LPIS (www.lpis.eu).

MAD transformation only brings about binary information on the change so that there is a request to 
label the change information in order to obtain the standard land cover transitions ‘from – to’, therefore 
it means to select proper classifiers. Boosting ones can handle this task very well.

The core of MAD transformation is a canonical correlation analysis (Hotelling, 1936), which creates 
orthogonal image differences called MAD variates that contain different sorts of changes and are un-
correlated with each other. It has been proven that this method is really efficient in detecting changes 
(Aleksandrowicz et al., 2014; Ma et al., 2016; Canty and Nielsen, 2012; Niemeyer et al., 2008). A few 
years later, the original MAD was enhanced with an iteration scheme (Nielsen, 2005; Nielsen, 2007) 
that appears to be able to detect changes in agricultural areas reliably (Nielsen et al. 2010). But we pre-
ferred testing the original MAD transformation due to its implementation in the open-source library 
Orfeo Toolbox (Christophe et al., 2008; Inglada and Christophe, 2009) in comparison to the IR-MAD 
algorithm (Canty and Nielsen, 2012). 

2 STUDY AREA

The study area is located in the north of the Czech Republic (Figure 1), in the northern foothills of Ji-
zerské hory (Jizera Mountains) near Frýdlant, Hejnice, and Raspenava, roughly 30 km from the regional 
capital of Liberec. The area is largely covered by vast expanses of meadows, pastures and arable land and 
coniferous forests. In the data model, the whole area of approximately 189 km2 is bordered by a polygon 
in the WGS 84 UTM 33N coordinate reference system. The study area is located in a mild climate with 
an average annual temperature of 8 0C. The average annual precipitation is 800 mm and the average 
sunshine is 1400 hours per year. 

Figure 1:  The detail of the selected study area in the north of the Czech Republic. 
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3  MATERIALS AND METHODS

3.1 Research aims

The aim of the research has been to introduce and test our process workflow (Figure 2) for mapping 
changes from arable lands to permanent grasslands. It utilises a combination of the original MAD (Mul-
tivariate Alteration Detection) transformation (Nielsen et al., 1998) and one of the advanced boosting 
algorithms. The main task is to choose the most suitable one with the highest accuracy and reliability in 
connection with the MAD transformation and bitemporal optical imagery.

3.2 Why boosting methods?

There are plenty of machine learning algorithms, but one specific method has been developed to re-
duced bias and variance in the form of boosting (Breiman, 1996). The history of boosting technique 
arises from the AdaBoost.M1 algorithm (Freund and Schapire, 1996) that uses the output from weak 
classifiers (weak learners) to create a strong one – the core of the boosting technique. As it was men-
tioned above, the spectral signatures of the vegetation are quite variable so that boosting algorithms 
are the best solution in order to reduce the bias in phenological stages, especially when it is hard to 
distinguish between the different sorts of crops and grasslands. Their spectral signatures may overlap 
and it might be challenging to recognise them. In general, boosting algorithms show very good results 
in terms of accuracy in remote sensing (Zhou et al., 2015) especially when a combination of different 
weak learners is utilised (Dhou et al., 2018). Due to their general reliability in remote sensing tasks we 
decided to test their performance in our land cover change detection workflow. The advantage of the 
AdaBoost algorithm (Freund and Schapire, 1996; Schapire, 2003) is the possibility of changing weak 
learners. We tested the performance of the AdaBoost algorithm with different weak learners. Firstly, 
we tested AdaBoost with C4.5 decision trees (Salzberg, 1994), the Random Forest classifier (Breiman, 
2001) and Decision Stumps (Iba and Langley, 1992), which are simple forms of standard decision 
trees (Breiman et al., 1984) including the modified version of the AdaBoost algorithm – MultiBoost 
AdaBoost (Webb, 2000). All forms of the AdaBoost algorithms were tested in the WEKA software 
package (Eibe et al., 2016) that was accessed through the RWeka package (Hornik et al., 2009) in R 
software (R Core Team, 2017). 

The latest advanced boosting algorithm is Extreme Gradient Boosting (XGboost). It appears that this boost-
ing algorithm is a robust and highly accurate classifier in the field of remote sensing (Georganos et al., 
2018). XGboost utilises standard decision trees as weak learners and uses the gradient boosting technique 
(Breiman, 1997). The difference between AdaBoost and Gradient Boosting technique is in the approach, 
how these classifiers identify weak learners. AdaBoost finds weak learners based on high weights on weak 
learners in comparison to Gradient Boosting algorithm that identifies weak learners by gradients in the 
loss function. The loss function in terms of boosting is a measure to indicate the efficiency of weight 
coefficients that fit underlying data.

Implementation of XGboost algorithm was undertaken with the help of the xgboost package (Chen et al., 
2017). Tuning of the XGBoost algorithm was executed with the help of the caret package (Wing et al., 
2017) in R. All models were tuned with ten-fold cross-validation and repeated five times.
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3.3 Data used and data processing

3.3.1 Data pre-processing

For the purpose of the analysis, we used a pair of optical images, the Landsat 5 ETM+ and the Landsat 
8 OLI, both downloaded from the USGS archive. The first image (Landsat 5) was captured on 3. 7. 
2010 and the second one on 6. 6. 2015. We used two methods of atmospheric correction schemes – the 
first one was the dark object subtraction method – DOS1 (Chavez et al., 1996) and the second one the 
LEDAPS (Landsat Ecosystem Disturbance Adaptive Processing System) algorithm (Masek et al., 2013) 
to calculate the surface reflectance. MAD (Multivariate Alteration Detection) transformation is insensi-
tive to the differences in gain and the offset and different atmospheric conditions, therefore, it is suitable 
for change detection with different sensors (Aleksandrowicz et al., 2014). Its insensitivity to gain and 
offset differences arises from similarity to standard Principal Component Analysis (PCA). MAD variates 
are calculated as orthogonal differences between both images. These orthogonal differences are created 
as linear combinations from original images similar to PCA transformation. PCA offers generalized 
information obtained from original image separated from the noise dedicated to higher components. 
Then analogously similar principal is valid for MAD variates, where each MAD variate contains differ-
ent intensity of change information and noise. Then both scenes were co-registered with each other and 
resampled with the nearest neighbour algorithm with the help of a third-degree polynomial transforma-
tion in ENVI 5.2. The root mean square error was less than 1 m. 

3.3.2 Ancillary data

We used vector layers from LPIS for the years 2010 and 2015 as the ancillary data. LPIS is a geographi-
cal information system to monitor agricultural subsidies and it is administered by the Ministry of Ag-
riculture of the Czech Republic (http://eagri.cz/public/app/lpisext/lpis/verejny2/plpis/). LPIS data is 
periodically updated and controlled via in situ inspections. LPIS database contains information about 
crop types and agricultural areas. From the point of view of this study, we extracted classes that are 
registered within LPIS database – Arable lands and Permanent grasslands. These classes were extracted in 
polygon format for further processing and investigations. In terms of LPIS Arable lands are defined as 
areas where agricultural crops are grown and they are not utilised for growing grass species. On the other 
hand, Permanent grasslands are known as areas where grass species are grown for a period of more than 
five years and follow the rules of subsidy policy from the European Union. LPIS vector layers served as 
the reference for the creation of the training and validation datasets in the form of spatial points as well 
as masks for crops and grassland areas.

3.3.3 Description of the process workflow

From the standardised images from the previous steps, we calculated several vegetation indices (Table 
1) for both Landsat scenes. These indices were put into MAD (Figure 2) transformation (Nielsen et 
al., 1998) and post-processed with the Maximum Autocorrelation Factor (MAF) (Switzer, 1985) as it 
was recommended to further enhance the change information (Canty and Nielsen, 2012). From the 
conditional existence of the MAD transformation, we reached the same amount of MAF components. 
These MAF components contain different change information types. Then it was decided to choose 
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the best combination of the three MAF components. We calculated the Optimum Index Factor (OIF) 
(Jensen, 1986):

  ii

iji j

S
OIF

R
= ∑
∑ ∑

 (1)

Si standard deviation of the i spectral band

Ri correlation coefficient for all possible combinations of the i, j spectral bands

Table 1:   Calculated vegetation indices.

Vegetation Index Equation

Difference Vegetation Index DVI=NIR-RED (Foley et al., 1998)

Green Difference Vegetation Index GDVI=NIR-GREEN (Sripada et al., 2005)

Green Ratio Vegetation Index  NIRGRVI
GREEN

= (Sripada et al., 2005)

Infrared Percentage Vegetation Index  NIRIPVI
NIR RED

=
+

(Crippen, 1990; Kooistra et al., 2003)

Modified Non-Linear Vegetation Index ( ) ( )2

2

* 1 0,5
 

0,5
NIR RED

MNLI
NIR RED

− +
=

+ +
(Yang et al., 2008)

Modified Simple Ratio
1

 
1

NIR
REDMSR
NIR
RED

 − 
 =
 

+ 
 

(Chen, 1996)

Normalized Difference Vegetation 
Index

 NIR REDNDVI
NIR RED

−
=

+
(Rouse et al., 1974)

Non-Linear Index
2 

2 NIR REDNLI
NIR RED

−
=

+
(Goel and Qin, 1994)

Optimized Soil Adjusted Vegetation 
Index

( )
( )
1,5 *

 
0,16

NIR RED
OSAVI

NIR RED
−

=
+ +

(Rondeaux et al., 1996)

Renormalized Difference Vegetation 
Index

( )
( )

 
NIR RED

RDVI
NIR RED

−
=

+ (Roujean and Breon, 1995)

Soil Adjusted Vegetation Index
1,5 * ( ) 
( 0,5)

NIR REDSAVI
NIR RED

−
=

+ +
(Roujean and Breon, 1995)

Simple Ratio  NIRSR
RED

= (Birth and McVey, 1968)

Transformed Vegetation Index
( )  0,5  
( )
NIR REDTVI
NIR RED

−
= +

+
(Deering, 1975)

The higher the OIF is (1), the better it is for change detection purposes. All MAF components were 
then directly classified (without OIF) using the pixel-based approach and then with the highest OIF. 
The first dataset for the pixel-based classifications was the full MAF difference image obtained from the 
calculated vegetation indices (Table 1) then with OIF reduction. For the object-based approach, the 
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best combination of the MAF components obtained with the highest OIF was imported into GRASS 
GIS (GRASS Development Team, 2017) and segmented. The parameters of the segmentation algorithm 
were selected automatically (Lennert, 2016). We calculated the spectral (minimum, maximum, average, 
range), the shape (area, perimeter, compact circle, compact square, fractal dimension) and all the textural 
features (Haralick and Shanmugam, 1973) in all directions. Feature extraction was undertaken through 
the i.segment.stats module (Lennert, 2018). All the features were exported and classified in R software 
(R Core Team, 2017) using the tested boosting algorithms.

We defined three land cover classes: 1. Arable land – Arable land, 2. Grassland – Grassland, 3. Arable 
land – Grassland. In the first round, the full dataset of the exported features was used with a total count 
of 584 and directly classified. In the second round, dimensionality reduction was performed with the 
help of the Correlation Feature Selection (CFS) algorithm (Hall, 1999; Hall and Holmes, 2003). We 
used the CFS algorithm for its fast computation and efficiency (Georganos et al., 2018).

Figure 2: Overview of the proposed change detection workflow.

As a reference, we used LPIS polygons to create 3000 spatial reference points with a stratified random 
sampling strategy. 50% was used as the training dataset and the second half was used as a validation 
dataset. For each class, we used an equal size of samples – 1000 points. For the purposes of 10-fold 
cross-validation, 70 % of the total 1500 training points from training dataset were used for training and 
30 % for validation. The accuracy assessment process was implemented in the classification process to 
quickly validate the results. We used the standard error matrix with the overall, the producer’s and the 
user’s accuracy metrics (Congalton, 1991; Congalton and Green, 2008) and with the kappa coefficient 
(Cohen, 1960). 
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Finally, we statistically evaluated all the classifications accuracies. As a statistical criterion, we used Fried-
man’s test (Friedman, 1937; Friedman, 1940; Demšar, 2006) that revealed statistically significant differ-
ences between the means of the overall accuracies of all the classifiers. As a post hoc test, the Nemenyi 
statistical test (Demšar, 2006; Nemenyi, 1962) was used in order to discover the differences between 
each pair of the classifiers. We implemented it in R software (Pohler, 2014).

4 RESULTS

Five different boosting classifiers and two different atmospheric correction methods were tested. The results 
show that all algorithms perform equally well, however, one exception appears. It is the most often used 
AdaBoost with the Decision Stump as a weak classifier. It can be seen that this most frequently utilised 
version of the AdaBoost algorithm with decision stumps produces unstable results for all cases (Figure 3). 
On the other hand, the Extreme Gradient Boosting algorithm and AdaBoost with the Random Forest 
as a weak classifier perform equally well for mapping changes from arable land to grassland. As for the 
pixel-based classifications, it can be seen that no dimensionality reduction is required (Figure 3 A and B). 
OIF dimensionality reduction leads to a decrease by 10 % on average for the overall, the user’s and the 
producer’s accuracies for DOS1 and almost 20 % for the pixel classifications of the products corrected with 
LEDAPS (Figure 3 E and F). Therefore, dimensionality reduction in case of pixel-based classifications of 
MAF components is not recommended. It leads to a loss of a significant amount of important information.

Figure 3: The producers’, users’ and overall accuracies for all the tested algorithms.
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On the other hand, object-based classifications produce more stable results without a salt and pepper 
effect (Figure 4). DOS1 data correction (Figure 3 C and D) with a full feature set and after the CFS 
feature selection provides similar results. The highest user’s, producer’s and overall accuracies are given 
by the object-based image analysis of the products processed by LEDAPS with all 584 features (Figure 
3 G). When these features were reduced (Figure 3 H), the accuracies are similar, therefore, it is recom-
mended to use an additional feature selection, as the CFS algorithm.

Figure 4 The results of the pixel-based (right column) and object-based (left column) classifications for the products corrected 
with the LEDAPS algorithm (a) Extreme Gradient Boosting OBIA (b) Extreme Gradient Boosting Pixel (c) AdaBoost 
with Random Forest OBIA (d) AdaBoost with Random Forest Pixel

A statistical evaluation shows obvious differences between AdaBoost with the Decision Stump 
(Table 3) and the other tested AdaBoost algorithms including the Extreme Gradient Boosting. 
However, other values indicate that the differences are not statistically significant. Though, in 
terms of speeding up the computations and efficiency, it is advisable to use the Extreme Gradient 
Boosting algorithm including the feature selection. The Extreme Gradient Boosting algorithm – 
89.51 % (Table 2) reached the absolute highest overall accuracy, the second one was AdaBoost 
with the Random Forest as the weak classifier – 87.78 % which appears to be a relevant alterna-
tive for classifying changes from arable land (Table 2) to permanent grasslands. These two highest 
overall accuracies were reached for the products corrected by LEDAPS algorithm in connection 
with object-based classifications.
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Table 2:  Overall accuracies for all the tested boosting algorithms (%)

 

DOS1 - 
PIXEL 
- FULL 

DATASET

DOS1 
- PIXEL - 

OIF

LEDAPS 
- PIXEL 
- FULL 

DATASET

LEDAPS 
- PIXEL - 

OIF

DOS1 – 
OBJECT-
BASED,
FULL 

DATASET

DOS1 – 
OBJECT-
BASED, 

CFS

LEDAPS – 
OBJECT-
BASED 
FULL 

DATASET

LEDAPS – 
OBJECT-
BASED, 

CFS

AdaBoost_J48 75 61 71 52 79 74 86 83

AdaBoost_RF 81 62 78 53 84 84 88 88

AdaBoost_DS 53 44 44 36 38 40 50 50

MultiBoost_
AdaBoost

76 59 69 52 77 72 84 79

Extreme 
Gradient 
Boosting

78 61 77 53 85 84 90 88

Table 3: Pairwise comparison for all boosting algorithms – p values after the post hoc Nemenyi test for critical level α = 0,05 
(p value less than α means statistically significant result)

 AdaBoost_J48 AdaBoost_RF AdaBoost_DS Multiboost_AdaBoost

AdaBoost_RF 0.56109 - - -

AdaBoost_DS 0.04485 0.00019 - -

Multiboost_AdaBoost 0.71282 0.04485 0.56109 -

Extreme Gradient Boosting 0.66359 0.99986 0.00038 0.06872

Legend:

AdaBoost_J48 – AdaBoost algorithm with C4.5 classifier as a weak learner

AdaBoost_RF – AdaBoost classifier with the Random Forest algorithm as a weak learner

AdaBoost_DS – AdaBoost classifier with standard Decision Trees as a weak learner

MultiBoost_AdaBoost– Multiboost AdaBoost classifier itself

Extreme Gradient Boosting – Extreme Gradient Boosting classifier itself

DOS1 dataset in the object domain reached less accurate results without and with CFS feature selection 
(Table 2) in comparison to the dataset corrected by the LEDAPS algorithm. This fact shows that it is 
better to use surface reflectance products created by LEDAPS algorithm than doing simple atmospheric 
correction in the form of dark object subtraction.

5 DISCUSSION 

We demonstrated the effectiveness of boosting classifiers for mapping changes from arable lands to 
permanent grasslands with utilisation of MAD transformation algorithm (Nielsen et al., 1998). Our 
results show that boosting algorithms provide efficient tool for high dimensional datasets especially in 
object-based image analysis (584 features extracted). Novelty of Extreme Gradient Boosting algorithm 
proves here its merits as well as in urban areas (Georganos et al., 2018) with help of CFS feature selection 
algorithm (Hall and Holmes, 2003; Hall, 1999). 

The limitations of our tested methodology arise from bitemporal imagery, where the biggest issue is to 
find the proper combination cloud-free imagery. On the other hand, once this is managed, our results 
show the effectiveness of our proposed methodology. There are other similar studies to our work and 
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they appear to be effective in terms of providing accurate results as well (Helmholz et al., 2014; Klouček 
et al., 2018; Yang et al. 2017).

Here we tested the Landsat satellite imagery that has a spatial resolution 30 m. Nowadays there are 
satellites with better spatial resolution such as Sentinel-2. Sentinel-2 satellites have the best spatial reso-
lution of 10 m for the spectral bands B2, B3, B4, B8 (ESA 2019). Even if their red-edge bands B5, B6, 
B7, B8A (ESA, 2019; Qiu et al., 2019) have a worse pixel size 20 m it is quite a big advantage over the 
Landsat satellite used in this study. From this point of view, Sentinel-2 can bring an improvement in 
our proposed approach especially in the case of the utilisation of its red-edge bands. Its spectral bands 
with better spatial resolution of 10 m might bring an improvement, especially for object image analysis.

As a simple input dimensionality data reduction, we used the Optimum Index Factor (Ren and Abdel-
salam, 2001) but a more traditional way for such a task is to use the Principal Component Analysis. 
Therefore, there is space for further investigations. Similar research should be concentrated on other 
feature selection methods other than CFS algorithm used in our study. A Recursive Feature Elimination 
algorithm implemented in the caret package for R (Wing et al., 2017) or the Boruta algorithm (Kursa 
et al., 2010) can serve as such examples. Both algorithms show good results (Duro et al., 2012; Ma et 
al., 2017). 

The most important thing is that the boosting methods have the ability to extract the relative importance 
of each input variable. This is possible in the case of the Extreme Gradient Boosting algorithm that is 
implemented in the xgboost package (Chen et al., 2017) or the H2O api (LeDell et al., 2019) also 
available for R, Python or Java. This is not possible for the AdaBoost.M1 algorithm because we used 
the RWeka (Hornik et al., 2009) package. It is a wrapper package for R that allows one to use limited 
functions instead of the WEKA software (Eibe et al., 2016) itself where this functionality is fully avail-
able. However, we do not recommend one to use the WEKA software directly because it can use a lot 
of system memory in the case of large datasets. This limitation has been empirically tested during the 
computation process of our study. When one is not familiar with R or Java, the Python programming 
language and its scikit-learn library (Buitinck et al. 2013) offers a good alternative. We must highlight 
that our process workflow requires decent programming skills because the boosting methods are not 
implemented in the common proprietary software such as ENVI or ERDAS Imagine. The open-source 
library Orfeo Toolbox (Inglada and Giros, 2008) offers a user-friendly alternative but there is a limitation 
in terms of the inability to change weak learners and the proper parameter tuning of each classifier. The 
results show that it is good to do a feature selection (Ma et al., 2017) especially for the OBIA approach 
in order to reduce the computation time and improve the accuracy because less is sometimes more 
(Georganos et al., 2018). Therefore, selecting the most important variables is a necessary step similar to 
how as Klouček et al. (2018) showed. They demonstrated that a combination of different vegetations 
indices brings redundant information for the change detection from grasslands to arable lands when the 
bi-temporal Landsat scenes were tested as well, as in our study. However we still recommend using the 
feature selection (Ma et al., 2017) regardless if the boosting methods have the ability to work with large 
datasets. The choice of the proper feature selection method is still a challenge that remains to be solved. 

If we look at the tested boosting classifiers, AdaBoost algorithm with Random Forest as a weak learner 
offers superior results in terms of accuracy. The Random Forest classifier itself (Breiman, 2001) showed 
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superior results in remote sensing (Belgiu and Dragut, 2016) so that an excellent performance could have 
been expected even when the Random Forest classifier was used as a weak learner. The boosting classifiers 
are more computationally demanding than the standalone Random Forest algorithm, but, on the other 
hand, the boosted Random Forest offers immunity to overfitting thanks to its randomness (Breiman, 
2001) and has the ability to reduce the bias and variance. We recommend using boosted Random Forest 
for smaller study areas due to its computational demands on the contrary to the standard Random Forest 
algorithm. In general, the computational demands of the boosting algorithms are perpendicular to the 
input amount of data to be analysed. However computational demands are not only derived from amount 
of input data but it also depends on the implementations of each algorithm which can differ significantly 
in the terms of speed. Therefore, a decent working station with a multicore CPU and a lot of RAM is 
recommended. Our computations were executed on an AMD Ryzen 1700 CPU with 32 GB RAM.

Extreme Gradient Boosting and AdaBoost with Random Forest are less vulnerable to overfitting on 
the contrary to AdaBoost with Decision Stump which was shown here. Potential improvements of our 
method arise from additional data – a creation of multitemporal datasets for each year for the sake of 
capturing temporal changes in reflectance. MAD algorithm is superior in handling different data from 
different sensors (Aleksandrowicz et al., 2014; Nielsen 2005) so that there may be another opportunity 
for improvement. We demonstrated effectiveness in obtaining reliable accurate results for mapping 
changes from arable land to grasslands only with bitemporal imagery. Many studies use multitemporal 
data, our approach uses only bitemporal data. This helps to overcome common issues such as availability 
of cloudless scenes and time-saving in terms of preprocessing and calibrating all input data when time 
series is used. Our process workflow utilises the most open-source software solutions and guarantees 
every interested person to replicate our experiments or adapt for own needs. However, all tested boost-
ing algorithms perform really well and provide similar results, especially in object domain so that it is 
up to producer’s choice and experience, time and fund possibilities which boosting algorithm to choose.

6 CONCLUSION

We successfully demonstrated the effectiveness of boosting methods in order to classify changes from arable 
lands to permanent grasslands in connection with MAD transformation. Our hybrid change detection 
workflow offers highly accurate results with high overall, producer’s and user’s accuracies when Landsat 
satellite data are used. We demonstrated that accurate results can be achieved with only two bitemporal 
scenes instead of standard image time series. We tested only optical data with spatial resolution of 30 
m. Further improvement can be expected from Sentinel-2 satellites that have better spatial resolution 
than Landsat satellites and contain red-edge bands dedicated to vegetation mapping. Therefore, future 
research should be concentrated on Sentinel-2 data or other upcoming satellites that will have similar 
temporal, spatial and radiometric resolutions similar to Landsat satellite family. 

Literature and references:
AAleksandrowicz, S., Turlej, K., Lewiński, S., Bochenek, Z. (2014). Change detection 

algorithm for the production of land cover change maps over the European 
Union countries. Remote Sensing, 6 (7), 5976–5994. DOI: https://doi.
org/10.3390/rs6075976

Atzberger, C. (2013). Advances in remote sensing of agriculture: Context description, 
existing operational monitoring systems and major information needs. Remote 
Sensing, 5 (2), 949–981. DOI: https://doi.org/10.3390/rs5020949 

Barrett, B., Nitze, I., Green, S., Cawkwell, F. (2014). Assessment of multi-temporal, 

Jiří Šandera, Přemysl Štych | KARTIRANJE SPREMEMB RABE ZEMLJIŠČ IZ NJIVSKIH POVRŠIN V TRAJNE TRAVNIKE Z NAPREDNIMI METODAMI | CHANGE DETECTION WORKFLOW FOR MAPPING 
CHANGES FROM ARABLE LANDS TO PERMANENT GRASSLANDS WITH ADVANCED BOOSTING METHODS | 379-394 |



| 391 |

GEODETSKI VESTNIK | 63/3 |

RE
CE

NZ
IRA

NI
 ČL

AN
KI 

| P
EE

R-
RE

VIE
W

ED
 AR

TIC
LE

S
SI 

| E
N

multi-sensor radar and ancillary spatial data for grasslands monitoring in Ireland 
using machine learning approaches. Remote Sensing of Environment, 152, 
109–124. DOI: https://doi.org/10.1016/j.rse.2014.05.018 

Belgiu, M., Csillik, O. (2018). Sentinel-2 cropland mapping using pixel-based and 
object-based time-weighted dynamic time warping analysis. Remote Sensing 
of Environment, 204, 509–523. DOI: https://doi.org/10.1016/j.rse.2017.10.005

Belgiu, M., Drăguţ, L. (2016). Random forest in remote sensing: A review of applications 
and future directions. ISPRS Journal of Photogrammetry and Remote Sensing, 
114, 24–31. DOI: https://doi.org/10.1016/j.isprsjprs.2016.01.011

Birth, G. S., McVey, G. R. (1968). Measuring the Color of Growing Turf with a Reflectance 
Spectrophotometer 1. Agronomy Journal, 60 (6), 640–643. DOI: https://doi.
org/10.2134/agronj1968.00021962006000060016x

Breiman, L. (1996). Bias, variance, and arcing classifiers. http://citeseerx.ist.psu.edu/
viewdoc/download?doi=10.1.1.115.7931&rep=rep1&type=pdf, accessed 
10. 1. 2019.  

Breiman, L. (1997). Arcing the edge. https://pdfs.semanticscholar.org/8162/
f9036f5b7a2a05fed1148cb04d5355c0f213.pdf, accessed 15. 3. 2019.

Breiman, L. (2001). Random forests. Machine Learning, 45 (1), 5–32. DOI: https://
doi.org/10.1023/a:1010933404324 

Buitinck, L., Louppe, G., Blondel, M., Pedregosa, F., Mueller, A., Grisel, O., … others. 
(2013). API design for machine learning software: experiences from the scikit-
learn project. arXiv Preprint arXiv:1309.0238. https://arxiv.org/pdf/1309.0238.
pdf, accessed 15. 3. 2019.

Canty, M. J., Nielsen, A. A. (2012). Linear and kernel methods for multivariate 
change detection. Computers & Geosciences, 38 (1), 107–114. DOI: https://
doi.org/10.1016/j.cageo.2011.05.012

Carlier, L., Rotar, I., Vlahova, M., Vidican, R. (2009). Importance and functions of 
grasslands. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 37 (1), 25. 
http://notulaebotanicae.ro/index.php/nbha/article/download/3090/2929, 
accessed 18. 3. 2019.

Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational 
and Psychological Measurement, 20 (1), 37–46. DOI: https://doi.
org/10.1177/001316446002000104 

Congalton, R. G. (1991). A review of assessing the accuracy of classifications of remotely 
sensed data. Remote Sensing of Environment, 37 (1), 35–46. DOI: https://doi.
org/10.1016/0034-4257(91)90048-b

Congalton, R. G., & Green, K. (2008). Assessing the accuracy of remotely 
sensed data: principles and practices. CRC press. DOI: https://doi.
org/10.1201/9781420055139 

Conrad, C., Fritsch, S., Zeidler, J., Rücker, G., & Dech, S. (2010). Per-field irrigated crop 
classification in arid Central Asia using SPOT and ASTER data. Remote Sensing, 
2 (4), 1035–1056. DOI: https://doi.org/10.3390/rs2041035

Crippen, R. E. (1990). Calculating the vegetation index faster. Remote Sensing 
of Environment, 34 (1), 71–73. DOI: https://doi.org/10.1016/0034-
4257(90)90085-z

Deering, D. W. (1975). Measuring“ forage production” of grazing units from Landsat 
MSS data. In Proceedings of the Tenth International Symposium of Remote 
Sensing of the Envrionment (pp. 1169–1198).

Demšar, J. (2006). Statistical comparisons of classifiers over multiple data sets. Journal 
of Machine Learning Research, 7 (Jan), 1–30. http://www.jmlr.org/papers/
volume7/demsar06a/demsar06a.pdf, accessed 24. 3. 2019.

Dou, P., Chen, Y., Yue, H. (2018). Remote-sensing imagery classification using 
multiple classification algorithm-based AdaBoost. International Journal of 
Remote Sensing, 39 (3), 619–639. DOI: https://doi.org/10.1080/01431161
.2017.1390276

Duro, D. C., Franklin, S. E., Dubé, M. G. (2012). Multi-scale object-based image analysis 
and feature selection of multi-sensor earth observation imagery using random 
forests. International Journal of Remote Sensing, 33 (14), 4502–4526. DOI: 
https://doi.org/10.1080/01431161.2011.649864

Eibe, F., Hall, M. A., Witten, I. H. (2016). The WEKA Workbench. Online Appendix 
for" Data Mining: Practical Machine Learning Tools and Techniques. Morgan 
Kaufmann. DOI: https://doi.org/10.1016/b978-0-12-804291-5.00024-6

Elbersen, B. S., Beaufoy, G., Jones, G., Noij, I., van Doorn, A. M., Breman, B. C., Hazeu, 
G. W. (2014). Aspects of data on diverse relationships between agriculture 
and the environment. https://ec.europa.eu/environment/agriculture/pdf/
report_data_aspectsAgriEnv.pdf, accessed 2. 2. 2019.

ESA. (2019). Spatial Resolution. https://sentinels.copernicus.eu/web/sentinel/user-
guides/sentinel-2-msi/resolutions/spatial, accessed 5. 2. 2019.

Esch, T., Metz, A., Marconcini, M., Keil, M. (2014). Combined use of multi-seasonal 
high and medium resolution satellite imagery for parcel-related mapping of 
cropland and grassland. International Journal of Applied Earth Observation and 
Geoinformation, 28, 230–237. DOI: https://doi.org/10.1016/j.jag.2013.12.007

Foley, W. J., McIlwee, A., Lawler, I., Aragones, L., Woolnough, A. P., Berding, N. (1998). 
Ecological applications of near infrared reflectance spectroscopy--a tool for 
rapid, cost-effective prediction of the composition of plant and animal tissues 
and aspects of animal performance. Oecologia, 116 (3), 293–305. DOI: https://
doi.org/10.1007/s004420050591

Freund, Y., Schapire, R. E., and others (1996). Experiments with a new boosting 
algorithm. In Icml (Vol. 96, pp. 148–156). http://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.51.6252&rep=rep1&type=pdf, accessed 5. 2. 2019.

Friedman, M. (1937). The use of ranks to avoid the assumption of normality implicit 
in the analysis of variance. Journal of the American Statistical Association, 32 
(200), 675–701. DOI: https://doi.org/10.1080/01621459.1937.10503522

Friedman, M. (1940). A comparison of alternative tests of significance for the problem 
of m rankings. The Annals of Mathematical Statistics, 11 (1), 86–92. DOI: https://
doi.org/10.1214/aoms/1177731944

Georganos, S., Grippa, T., Vanhuysse, S., Lennert, M., Shimoni, M., Kalogirou, S., 
Wolff, E. (2018). Less is more: optimizing classification performance through 
feature selection in a very-high-resolution remote sensing object-based urban 
application. GIScience & Remote Sensing, 55 (2), 221–242. DOI: https://doi.or
g/10.1080/15481603.2017.1408892

Goel, N. S., Qin, W. (1994). Influences of canopy architecture on relationships 
between various vegetation indices and LAI and FPAR: A computer 
simulation. Remote Sensing Reviews, 10 (4), 309–347. DOI: https://doi.
org/10.1080/02757259409532252

GRASS Development Team. (2017). Geographic Resources Analysis Support System 

Jiří Šandera, Přemysl Štych | KARTIRANJE SPREMEMB RABE ZEMLJIŠČ IZ NJIVSKIH POVRŠIN V TRAJNE TRAVNIKE Z NAPREDNIMI METODAMI | CHANGE DETECTION WORKFLOW FOR MAPPING 
CHANGES FROM ARABLE LANDS TO PERMANENT GRASSLANDS WITH ADVANCED BOOSTING METHODS | 379-394 |



| 392 |

| 63/3 | GEODETSKI VESTNIK  
RE

CE
NZ

IRA
NI

 ČL
AN

KI 
| P

EE
R-

RE
VIE

W
ED

 AR
TIC

LE
S

SI 
| E

N

(GRASS GIS) Software, Version 7.2. http://grass.osgeo.org, accessed 5. 2. 2019.

H2O.ai. (2019). R Interface for H2O. https://github.com/h2oai/h2o-3, accessed 5. 
2. 2019.

Hall, M. A. (1999). Correlation-based feature selection for machine learning. 
https://www.lri.fr/~pierres/donn%E9es/save/these/articles/lpr-queue/
hall99correlationbased.pdf, accessed 20. 3. 2019.

Hall, M. A., Holmes, G. (2003). Benchmarking attribute selection techniques for discrete 
class data mining. IEEE Transactions on Knowledge and Data Engineering, 15 (6), 
1437–1447. DOI: https://doi.org/10.1109/tkde.2003.1245283

Haralick, R. M., Shanmugam, K. (1973). Textural features for image classification. 
IEEE Transactions on Systems, Man, and Cybernetics, (6), 610–621. http://
haralick.org/journals/TexturalFeaturesHaralickShanmugamDinstein.pdf, 
accessed 5. 2. 2019.

Helmholz, P., Rottensteiner, F., Heipke, C. (2014). Semi-automatic verification of 
cropland and grassland using very high resolution mono-temporal satellite 
images. ISPRS Journal of Photogrammetry and Remote Sensing, 97, 204–218. 
DOI: https://doi.org/10.1016/j.isprsjprs.2014.09.008

Hornik, K., Buchta, C., Zeileis, A. (2009). Open-source machine learning: R meets 
Weka. Computational Statistics, 24 (2), 225–232. DOI: https://doi.org/10.1007/
s00180-008-0119-7

Hotelling, H. (1936). Relations between two sets of variates. Biometrika, 28 (3/4), 
321–377. DOI: https://doi.org/10.2307/2333955

Chavez, P. S., and others. (1996). Image-based atmospheric corrections-
revisited and improved. Photogrammetric Engineering and Remote 
S e n s i n g,  6 2  ( 9 ) ,  1 0 2 5 – 1 0 3 5 .  ht t p s : / / p d f s . s e m a nt i c s c h o l a r.
org/45f1/2625ce130261c7d360d50e09c635355ca919.pdf, accessed 5. 2. 2019.

Chen, J. M. (1996). Evaluation of vegetation indices and a modified simple ratio for 
boreal applications. Canadian Journal of Remote Sensing, 22 (3), 229–242. DOI: 
https://doi.org/10.4095/218303

Chen, J., Liu, H., Chen, J., Peng, S. (2018). Trend forecast based approach for cropland 
change detection using Lansat-derived time-series metrics. International 
Journal of Remote Sensing, 39 (21), 7587–7606. DOI: https://doi.org/10.10
80/01431161.2018.1475774

Chen, T., He, T., Benesty, M., Khotilovich, V., Tang, Y. (2017). xgboost: Extreme Gradient 
Boosting. https://cran.r-project.org/package=xgboost, accessed 16. 2. 2019.

Christophe, E., Inglada, J., Giros, A. (2008). Orfeo toolbox: a complete solution 
for mapping from high resolution satellite images. International Archives of 
the Photogrammetry, Remote Sensing and Spatial Information Sciences, 37 
(PART B4), 1263–1268. https://www.researchgate.net/profile/Emmanuel_
Christophe/publication/228880189_ORFEO_TOOLBOX_A_COMPLETE_
SOLUTION_FOR_MAPPING_FROM_HIGH_RESOLUTION_SATELLITE_IMAGES/
links/0f31753bdeb1ae1c64000000.pdf, accessed 1. 3. 2019.

Iba, W., Langley, P. (1992). Induction of one-level decision trees. In Machine Learning 
Proceedings 1992 (pp. 233–240). Elsevier. DOI: https://doi.org/10.1016/b978-
1-55860-247-2.50035-8

Jensen, J. R. (1986) Introductory Digital Image Processing: A Remote Sensing 
Perspective. Prentice-Hall, Englewood Cliffs, New Jersey, USA, 379p. DOI: https://
doi.org/10.1016/0262-8856(86)90052-1

Klouček, T., Moravec, D., Komárek, J., Lagner, O., Štych, P. (2018). Selecting appropriate 
variables for detecting grassland to cropland changes using high resolution 
satellite data. PeerJ, 6, e5487. DOI: https://doi.org/10.7717/peerj.5487

Kooistra, L., Leuven, R., Wehrens, R., Nienhuis, P. H., Buydens, L. M. C. (2003). A 
comparison of methods to relate grass reflectance to soil metal contamination. 
International Journal of Remote Sensing, 24 (24), 4995–5010. DOI: https://doi.
org/10.1080/0143116031000080769

Kursa, M. B., Rudnicki, W. R., and others. (2010). Feature selection with the Boruta 
package. Journal od Statistical Software, 36 (11), 1–13. DOI: https://doi.
org/10.18637/jss.v036.i11

Lennert, M. (2016). GRASS Development Team Addon i.segment.uspo. https://grass.
osgeo.org/grass74/manuals/addons/i.segment.uspo.html, accessed 16. 3. 2019.

Lennert, M. (n.d.). GRASS Development Team Addon i.segment.stats. https://grass.
osgeo.org/grass74/manuals/addons/i.segment.stats.html, accessed 16. 3. 2019.

Leo Breiman, Jerome Friedman, Charles J. Stone, R. A. O. (1984). Classification adn 
Regression Trees (1 st editi). CRC press. DOI: https://doi.org/10.2307/2530946

Liu, C., Frazier, P., Kumar, L. (2007). Comparative assessment of the measures of 
thematic classification accuracy. Remote Sensing of Environment, 107 (4), 
606–616. DOI: https://doi.org/10.1016/j.rse.2006.10.010

Lobo, A., Chic, O., Casterad, A. (1996). Classification of Mediterranean crops with 
multisensor data: per-pixel versus per-object statistics and image segmentation. 
International Journal of Remote Sensing, 17 (12), 2385–2400. DOI: https://doi.
org/10.1080/01431169608948779

Lunetta, R. S., Shao, Y., Ediriwickrema, J., Lyon, J. G. (2010). Monitoring agricultural 
cropping patterns across the Laurentian Great Lakes Basin using MODIS-NDVI 
data. International Journal of Applied Earth Observation and Geoinformation, 
12 (2), 81–88. DOI: https://doi.org/10.1016/j.jag.2009.11.005

Ma, L., Fu, T., Blaschke, T., Li, M., Tiede, D., Zhou, Z., Chen, D. (2017). Evaluation of 
feature selection methods for object-based land cover mapping of unmanned 
aerial vehicle imagery using random forest and support vector machine 
classifiers. ISPRS International Journal of Geo-Information, 6 (2), 51. DOI: https://
doi.org/10.3390/ijgi6020051

Ma, L., Li, M., Blaschke, T., Ma, X., Tiede, D., Cheng, L., Chen, D. (2016). Object-based 
change detection in urban areas: the effects of segmentation strategy, scale, 
and feature space on unsupervised methods. Remote Sensing, 8 (9), 761. DOI: 
https://doi.org/10.3390/rs8090761

Masek, J. G., Vermote, E. F., Saleous, N., Wolfe, R., Hall, F. G., Huemmrich, F., Lim, T. K. 
(2013). LEDAPS calibration, reflectance, atmospheric correction preprocessing 
code, version 2. Model Product. DOI: https://doi.org/10.3334/ORNLDAAC/1146

Müller, H., Rufin, P., Griffiths, P., Siqueira, A. J. B., Hostert, P. (2015). Mining dense 
Landsat time series for separating cropland and pasture in a heterogeneous 
Brazilian savanna landscape. Remote Sensing of Environment, 156, 490–499. 
DOI: https://doi.org/10.1016/j.rse.2014.10.014

Nemenyi, P. (1962). Distribution-free multiple comparisons. In Biometrics (Vol. 
18, p. 263).

Nielsen, A. A. (2005). An iterative extension to the MAD transformation 
f o r  c h a n g e  d e t e c t i o n  i n  m u l t i - a n d  h y p e r s p e c t r a l  re m o t e 
sensing data. A a, 11 (2), 21. http://citeseerx.ist.psu.edu/viewdoc/

Jiří Šandera, Přemysl Štych | KARTIRANJE SPREMEMB RABE ZEMLJIŠČ IZ NJIVSKIH POVRŠIN V TRAJNE TRAVNIKE Z NAPREDNIMI METODAMI | CHANGE DETECTION WORKFLOW FOR MAPPING 
CHANGES FROM ARABLE LANDS TO PERMANENT GRASSLANDS WITH ADVANCED BOOSTING METHODS | 379-394 |



| 393 |

GEODETSKI VESTNIK | 63/3 |

RE
CE

NZ
IRA

NI
 ČL

AN
KI 

| P
EE

R-
RE

VIE
W

ED
 AR

TIC
LE

S
SI 

| E
N

download?doi=10.1.1.381.8317&rep=rep1&type=pdf, accessed 5. 3. 2019.

Nielsen, A. A. (2007). The regularized iteratively reweighted MAD method for 
change detection in multi-and hyperspectral data. IEEE Transactions on 
Image Processing, 16 (2), 463–478. http://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.381.8317&rep=rep1&type=pdf, accessed 5. 2.  2019.

Nielsen, A. A., Conradsen, K., Simpson, J. J. (1998). Multivariate alteration detection 
(MAD) and MAF postprocessing in multispectral, bitemporal image data: New 
approaches to change detection studies. Remote Sensing of Environment, 64 
(1), 1–19. DOI: https://doi.org/10.1016/s0034-4257(97)00162-4

Nielsen, A. A., Hecheltjen, A., Thonfeld, F., Canty, M. J. (2010). Automatic change 
detection in RapidEye data using the combined MAD and kernel MAF methods. In 
Geoscience and Remote Sensing Symposium (IGARSS), 2010 IEEE International 
(pp. 3078–3081). DOI: https://doi.org/10.1109/igarss.2010.5652663

Niemeyer, I., Marpu, P. R., Nussbaum, S. (2008). Change detection using object 
features. In Object-Based Image Analysis (pp. 185–201). Springer. DOI: https://
doi.org/10.1007/978-3-540-77058-9_10

Pakzad, K., Growe, S., Heipke, C., Liedtke, C.-E. (2001). Multitemporale 
Luftbildinterpretation: Strategie und Anwendung. KI, 15 (4), 10–16. 
https://www.researchgate.net/publication/220633234_Multitemporale_
Luftbildinterpretation_Strategie_und_Anwendung, accessed 10. 2. 2019.

Peng, D., Jiang, Z., Huete, A. R., Ponce-Campos, G. E., Nguyen, U., Luvall, J. C. 
(2013). Response of spectral reflectances and vegetation indices on varying 
juniper cone densities. Remote Sensing, 5 (10), 5330–5345. DOI: https://doi.
org/10.3390/rs5105330

Pflugmacher, D., Rabe, A., Peters, M., Hostert, P. (2019). Mapping pan-European 
land cover using Landsat spectral-temporal metrics and the European LUCAS 
survey. Remote Sensing of Environment, 221, 583–595. DOI: https://doi.
org/10.1016/j.rse.2018.12.001

Pohlert, T. (2014). The Pairwise Multiple Comparison of Mean Ranks Package (PMCMR). 
http://cran.r-project.org/package=PMCMR, accessed 10. 3. 2019.

Qiu, S., He, B., Yin, C., Liao, Z. (2017). Assessments of Sentinel 2 vegetation red-
edge spectral bands for improving land cover classification. Proceeding. The 
International Archive of the Photogrammetry, Remote Sensing and Spatial 
Information Sciences, 42. DOI: https://doi.org/10.5194/isprs-archives-xlii-
2-w7-871-2017

R Core Team. (2017). R: A Language and Environment for Statistical Computing. Vienna, 
Austria. https://www.r-project.org, accessed 20. 12. 2018.

Rondeaux, G., Steven, M., Baret, F. (1996). Optimization of soil-adjusted vegetation 
indices. Remote Sensing of Environment, 55 (2), 95–107. DOI: https://doi.
org/10.1016/0034-4257(95)00186-7

Roujean, J.-L., Breon, F.-M. (1995). Estimating PAR absorbed by vegetation from 
bidirectional reflectance measurements. Remote Sensing of Environment, 51 
(3), 375–384. DOI: https://doi.org/10.1016/0034-4257(94)00114-3

Rouse Jr, J., Haas, R. H., Schell, J. A., Deering, D. W. (1974). Monitoring vegetation 
systems in the Great Plains with ERTS. https://ntrs.nasa.gov/archive/nasa/casi.
ntrs.nasa.gov/19740022614.pdf, accessed 17. 2. 2019.

Salzberg, S. L. (1994). C4. 5: Programs for machine learning by j. ross quinlan. morgan 
kaufmann publishers, inc., 1993. Machine Learning, 16 (3), 235–240. DOI: 

https://doi.org/10.1007/bf00993309

Schapire, R. E. (2003). The boosting approach to machine learning: An overview. In 
Nonlinear estimation and classification (pp. 149–171). Springer. DOI: https://
doi.org/10.1007/978-0-387-21579-2_9

Smith, A. M., Buckley, J. R. (2011). Investigating RADARSAT-2 as a tool for monitoring 
grassland in western Canada. Canadian Journal of Remote Sensing, 37 (1), 
93–102. DOI: https://doi.org/10.5589/m11-027

Sripada, R. P., Heiniger, R. W., White, J. G., Weisz, R. (2005). Aerial color infrared 
photography for determining late-season nitrogen requirements in corn. 
Agronomy Journal, 97 (5), 1443–1451. DOI: https://doi.org/10.2134/
agronj2004.0314

Stefanski, J., Mack, B., Waske, B. (2013). Optimization of object-based image analysis 
with random forests for land cover mapping. IEEE Journal of Selected Topics in 
Applied Earth Observations and Remote Sensing, 6( 6), 2492–2504. DOI: https://
doi.org/10.1109/jstars.2013.2253089

Stoate, C., Báldi, A., Beja, P., Boatman, N. D., Herzon, I., Van Doorn, A., Ramwell, C. 
(2009). Ecological impacts of early 21st century agricultural change in Europe--a 
review. Journal of Environmental Management, 91 (1), 22–46. DOI: https://doi.
org/10.1016/j.jenvman.2009.07.005

Stoate, C., Boatman, N. D., Borralho, R. J., Carvalho, C. R., De Snoo, G. R., Eden, P. (2001). 
Ecological impacts of arable intensification in Europe. Journal of Environmental 
Management, 63 (4), 337–365. DOI: https://doi.org/10.1006/jema.2001.0473

Switzer, P. (1985). Min/max autocorrelation factors for multivariate spatial 
imagery. Computer Science and Statistics. https://www.researchgate.net/
publication/246829231_Minmax_autocorrelation_factors_for_multivariate_
spatial_imagery, accessed 15. 3. 2019.

Vegetation Science Group, (2019). Vegetation Science Group. https://www.sci.muni.
cz/botany/vegsci/vegetace.php?lang=en, accessed 15. 3. 2019.

Wang, X., Gao, Q., Wang, C., Yu, M. (2017). Spatiotemporal patterns of vegetation 
phenology change and relationships with climate in the two transects of 
East China. Global Ecology and Conservation, 10, 206–219. DOI: https://doi.
org/10.1016/j.gecco.2017.01.010

Wardlow, B. D., Egbert, S. L., Kastens, J. H. (2007). Analysis of time-series MODIS 
250 m vegetation index data for crop classification in the US Central Great 
Plains. Remote Sensing of Environment, 108( 3), 290–310. DOI: https://doi.
org/10.1016/j.rse.2006.11.021

Webb, G. I. (2000). Multiboosting: A technique for combining boosting and wagging. 
Machine Learning, 40 (2), 159–196. DOI: https://doi.org/10.1023/A:100765951

Weeks, E. S., Ausseil, A.-G. E., Shepherd, J. D., Dymond, J. R. (2013). Remote sensing 
methods to detect land-use/cover changes in N ew Z ealand’s “indigenous” 
grasslands. New Zealand Geographer, 69 (1), 1–13. DOI: https://doi.
org/10.1111/nzg.12000

Wing J. M. K. C., Weston, S., Williams, A., Keefer, C., Engelhardt, A., Cooper, T., Hunt., T. 
(2017). caret: Classification and Regression Training. https://cran.r-project.org/
package=caret, accessed 19. 12. 2018.

Xu, Y., Yu, L., Zhao, F. R., Cai, X., Zhao, J., Lu, H., Gong, P. (2018). Tracking annual 
cropland changes from 1984 to 2016 using time-series Landsat images with 
a change-detection and post-classification approach: Experiments from three 

Jiří Šandera, Přemysl Štych | KARTIRANJE SPREMEMB RABE ZEMLJIŠČ IZ NJIVSKIH POVRŠIN V TRAJNE TRAVNIKE Z NAPREDNIMI METODAMI | CHANGE DETECTION WORKFLOW FOR MAPPING 
CHANGES FROM ARABLE LANDS TO PERMANENT GRASSLANDS WITH ADVANCED BOOSTING METHODS | 379-394 |



| 394 |

| 63/3 | GEODETSKI VESTNIK  
RE

CE
NZ

IRA
NI

 ČL
AN

KI 
| P

EE
R-

RE
VIE

W
ED

 AR
TIC

LE
S

SI 
| E

N

sites in Africa. Remote Sensing of Environment, 218, 13–31. DOI: https://doi.
org/10.1016/j.rse.2018.09.008

Yang, X., Smith, A. M., & Hill, M. J. (2017). Updating the grassland vegetation 
inventory using change vector analysis and functionally-based vegetation 
indices. Canadian Journal of Remote Sensing, 43 (1), 62–78. DOI: https://doi.
org/10.1080/07038992.2017.1263151

Yang, Z., Willis, P., Mueller, R. (2008). Impact of band-ratio enhanced AWIFS image to 
crop classification accuracy. In Proc. Pecora (Vol. 17). http://www.asprs.org/a/
publications/proceedings/pecora17/0041.pdf, accessed 20. 2. 2019.

Yin, H., Prishchepov, A. V, Kuemmerle, T., Bleyhl, B., Buchner, J., Radeloff, V. C. 

(2018). Mapping agricultural land abandonment from spatial and temporal 

segmentation of Landsat time series. Remote Sensing of Environment, 210, 

12–24. DOI: https://doi.org/10.1016/j.rse.2018.02.050

Zhou, Z., Huang, J., Wang, J., Zhang, K., Kuang, Z., Zhong, S., Song, X. (2015). Object-

oriented classification of sugarcane using time-series middle-resolution Remote 

Sensing data based on adaboost. PloS One, 10 (11), e0142069. DOI: https://doi.

org/10.1371/journal.pone.0142069

Jiří Šandera, M.Sc.
Faculty of Science

Department of Applied Geoinformatics and Cartography 
Albertov 6, Prague 2, 128 43, Czech Republic

e-mail: jirisandera@windowslive.com

Assoc. Prof. Přemysl Štych, Ph.D.
Faculty of Science
Department of Applied Geoinformatics and Cartography 
Albertov 6, Prague 2, 128 43, , Czech Republic
e-mail: stych@natur.cuni.cz

Šandera J., Štych P. (2019). Change detection workflow for mapping changes from arable lands to permanent grasslands with 
advanced boosting methods. Geodetski vestnik, 63 (3), 379-394. 

DOI: https://doi.org/10.15292/geodetski-vestnik.2019.03.379-394

Jiří Šandera, Přemysl Štych | KARTIRANJE SPREMEMB RABE ZEMLJIŠČ IZ NJIVSKIH POVRŠIN V TRAJNE TRAVNIKE Z NAPREDNIMI METODAMI | CHANGE DETECTION WORKFLOW FOR MAPPING 
CHANGES FROM ARABLE LANDS TO PERMANENT GRASSLANDS WITH ADVANCED BOOSTING METHODS | 379-394 |

Jiří Šandera designed and performed the research, analyzed data and wrote the manuscript. He prepared maps, 
figures and tables. 

Přemysl Štych is a senior author. He conceived and supervised the research and made a contribution to writing 
the text. Both authors discussed and approved the submitted manuscript.


